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The need for formal methods

“The Ariane 5 rocket exploded on June 4, 1996, less than forty

seconds after it was launched. The committee that investigated

the accident found that is was caused by a software error in the

computer that was responsible for calculating the rocket’s

movement. During the launch, an exception occurred when a

large 64-bit floating point number was converted to a 16-bit

signed integer. This conversion was not protected by code for

handling exceptions and caused the computer to fail. The same

error also caused the backup computer to fail. As a result

incorrect attitude data was transmitted to the on-board

computer, which caused the destruction of the rocket.”



An introduction to model checking 5

'

&

$

%

The need for formal methods

Today, hardware and software systems are widely used in
applications where failure is unacceptable: electronic commerce,
telephone switching networks, highway and air traffic control
systems, medical instruments, and more.

Unfortunately, it is no longer feasible to shut down a
malfunctioning system in order to restore safety. In fact, in some
cases, devices are less safe when they are shut down.

Even when failure is not life-threatening, the consequences of
having to replace critical code or circuitry can be economically
devastating. The Intel Pentium bug in the division algorithm is a
good example.
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Hardware and software verification

The principal validation methods for complex systems are
simulation, testing, deductive verification, and model
checking.
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Simulation and testing

Simulation and testing both involve making experiments before
deploying the system in the field.

While simulation is performed on an abstraction or a model of the
system, testing is performed on the actual product. In both cases,
these methods typically inject signals/inputs at certain points in
the system and observe the resulting signals/outputs at other
points.

These methods can be a cost-efficient way to find many errors.
However, checking all the possible interactions and potential
pitfalls using simulation and testing techniques is rarely possible.
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Deductive verification

Deductive verification techniques use axioms and proof rules to
prove the correctness of systems.

Initially, such proofs were constructed entirely by hand. Eventually,
researchers realized that software tools can be apply to suggest
various ways to progress from the current stage of the proof.
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Deductive verification

An advantage of deductive verification is that it can be used for
reasoning about infinite state systems. This task can be
automated to a limited extent. However, even if the property to be
verified is true, no limit can be placed on the amount of time or
memory that may be needed in order to find a proof.

Deductive verification is a time-consuming process that can be
performed only by experts who are educated to logical reasoning.
Consequently, it is applied primarily to high sensitive systems such
as security protocols.
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Model checking

Model checking is a technique for verifying finite state
concurrent systems. One benefit of this restriction is that
verification can be performed automatically.

The model checker normally uses an exhaustive search of the
finite state space of the system to determine if some specification
(property of the system) is true or not.



An introduction to model checking 12

'

&

$

%

Model checking

When the system fails to satisfy a desired property, the model
checker produces a counterexample that demonstrates a wrong
behavior. This faulty trace provides insight to understand the
actual reason for the failure as well as important clues for fixing the
problem.

Given sufficient resources, the model checker will always terminate
with a yes/no answer. Moreover, it can be implemented by
algorithms with reasonable efficiency.
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The limitations of the computer

It is important to realize that some mathematical tasks cannot be
performed by an algorithm. The theory of computability
provides limitations on what can be decided by an algorithm.

In particular, there cannot be an algorithm that decides whether an
arbitrary computer program terminates. This immediately limits
what can be verified automatically.

Thus, restrictions on systems as well as on properties to be verified
must be taken into account whenever we aim at developing tools
for automatic verification.
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The process of model checking

Applying model checking to a design consists of several tasks:

1. Modeling

2. Specification

3. Verification
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The process of model checking

System Design

Executable Program

Abstract ModelFormal Specification

Model Checker

Implementation

Modelling

Specification

Verification

Yes

No No
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Modeling

We are interested in concurrent systems, that is, nonterminating
systems composed of different processes running in parallel.

The first task is to convert the design of the system into an
abstract model accepted by a model checking tool. The abstract
model should eliminate irrelevant details of the design.

In some cases, this conversion can be done automatically (hardware
design). In most cases, however, human guidance and assistance in
unavoidable.
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Modeling

We use a Kripke structure to model the behavior of concurrent
systems.

A Kripke structure is a node-labeled graph. The nodes of the graph
model system states and are labeled with information true at
that state. The edges of the graph represent system transitions
as the result of some action of the system.
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Specification

Before verifying, it is necessary to state the properties that system
design must satisfy.

The specification is usually given in some logical formalism. It is
common to use temporal logic, which can state how the behavior
of the systems evolves over time.
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Specification

Important issues in specification are:

Consistency Is the given specification consistent?

Completeness Does the given specification cover all the
properties that the system should satisfy?

These issues are not directly addressed in model checking.
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Verification

Ideally verification is completely automatic. However, in practice,
it often involves human assistance.

One such manual activity is the analysis of the verification results.
In the case of a negative result, the user is provided with an error
trace. This can help the designer in tracking down where the error
occurred.

In this case, analyzing the trace error may require a modification of
the system and reapplication of the model checking algorithm.
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Verification

An error trace can also result from a false negative, that is from:

• incorrect modeling of the system, or

• incorrect formalization of the specification, or

• inconsistent specification.

A final possibility is that the verification task will fail to terminate
normally, due to the size of the model, which is too large to fit into
the computer memory.
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Temporal logic and model checking

Temporal logics have proved to be useful for specifying
concurrent systems, because they can describe the ordering of
events in time without introducing time explicitly.

They are often classified in linear time logics (like LTL) and
branching time logics (like CTL and CTL∗), according to
whether time is assumed to have a linear or branching structure.
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A brief history of temporal logic

60’s Prior defines temporal logics and uses them in order to
investigate philosophical and theological questions like the
controversial between free willing and determinism.

1977 Pnueli adopts for the very first time the same temporal logics
for analyzing the behaviour of concurrent computer programs.

1983 Clarke, Emerson and Sistla prove that the model checking
problem for Computation Tree Logic CTL∗ is
PSPACE-complete.

1985 Clarke and Sistla prove that the model checking problem for
Linear Temporal Logic LTL is PSPACE-complete.
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A brief history of temporal logic

1986 Vardi and Wolper propose the use of automata over infinite
words for linear time model checking.

1986 Clarke, Emerson and Sistla devise a linear time model
checker for Computation Tree Logic CTL.

1987 McMillan realizes the effectiveness of using symbolic
algorithms to perform model checking.

The destiny of human beings and computer programs have both
been investigated with temporal logics!
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The state explosion problem

The major drawback of model checking is the state explosion
problems. The parallel composition of two concurrent components
is modeled by taking the Cartesian product of the corresponding
state spaces.

This means that the global state space of a concurrent system has
size exponential in the number of concurrent processes running in
the system.

The exploration a huge state space may be prohibitive even for an
algorithm running in linear time in the size of the model.
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The state explosion problem

Two main approaches have been proposed to cope with the state
explosion problem:

• Symbolic algorithms

• Partial order reduction
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Symbolic algorithms

The idea of symbolic model checking is to encode each system
state as an assignment of Boolean values (0 or 1) to the set of state
variables associated with the system.

A set of states is hence a set of assignments, and may be implicitly
represented as a Boolean formula over the set of state variables.

The transition relation is a mapping from states to states, and
hence may be implicitly represented as a Boolean formula in terms
of two sets of variables: one set encoding the old state and the
other encoding the new.
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Symbolic algorithms

Logical formulas may be associated with the set of states that
validate the formula, and hence they may be implicitly represented
as Boolean formulas.

Finally, Boolean formulas may be compactly represented by using
Ordered Binary Decision Diagrams (OBDDs).

The symbolic model checking algorithm performs the verification
by manipulating the OBDD representations of the system and of
the formula. Efficient algorithms exist to manipulate OBDDs.
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Partial order reduction

Verifying software causes some problems for model checking.
Software tends to be less structured than hardware.

In addition, concurrent software is usually asynchronous, that is,
most of the activities taken by different processes are performed
independently, without a global synchronizing clock.

For these reasons, the state explosion problem is particularly
serious for software.
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Partial order reduction

The most successful technique for dealing with the state explosion
problem for software is the partial order reduction.

A common model for representing concurrent software is the
interleaving model, in which all of the events is a single
execution are arranged in a linear order called an interleaving
sequence. Concurrently executed events appear arbitrarily
ordered with respect to one other.

In the partial model of program execution, concurrently executed
events are not ordered. Each partial order execution can
correspond to multiple interleaving sequences.
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Partial order reduction

Two events are independent of each other when executing them
in either order results in the same global state.

It makes no sense to distinguish between two interleaving sequences
in which two independent events are executed in different order.
Only one of them may be selected.

The partial order reduction technique reduces the state space by
selecting only a subset of the ways one can interleave independently
executed transitions.
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Modal Logics - Syntax

Modal logics extend Propositional Calculus by adding a modality
F (usually denoted by ♦) which locally shifts the evaluation
perspective.

More formally, let PROP = {p, q, . . .} be a set of proposition
variables. The syntax of modal logic is as follows:

ϕ := > | p | ¬ϕ | ϕ ∧ ϕ′ | Fϕ

The dual modality G (usually denoted by ¤) is defined as:

Gϕ = ¬F¬ϕ
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Modal Logics - Structures

Modal logic is interpreted over Kripke structures of the form
〈M, R, V 〉, where

• M is a set of worlds (or states, points, . . . );

• R ⊆ M ×M is a binary relation on M ;

• V : PROP → 2M is a valuation function mapping propositions
to set of states.
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Modal Logics - Semantics

Let M = 〈M,R, V 〉 be a Kripke structures and m ∈ M . The
semantics of modal logic is as follows:

M, m |= >
M, m |= p iff m ∈ V (p), p ∈ PROP

M, m |= ¬ϕ iff M, m 6|= ϕ

M, m |= ϕ ∧ ψ iff M, m |= ϕ and M, m |= ψ

M, m |= Fϕ iff there is m′ such that Rmm′ and M, m′ |= ϕ
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Model and satisfiability checking

Model checking: Given a finite Kripke structure M, a world m in
M, and a formula ϕ, does M,m |= ϕ?

Satisfiability checking: Given a formula ϕ, is there a Kripke
structure M and a world m in M such that M,m |= ϕ?
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Procedure ModalModelChecker(〈M, R, V 〉, α)

for every i = 1, . . . , |α| do

for every β ∈ Sub(α) such that |β| = i do

case on the form of β

? β = p

? β = β1 ∧ β2

for every w ∈ M do

if β1 ∈ V (w) and β2 ∈ V (w) then

V (w) = V (w) ∪ {β}
? β = ¬β1

for every w ∈ M do

if not β1 ∈ V (w) then

V (w) = V (w) ∪ {β}
? β = Fγ

for every w ∈ M do

if ∃v. Rwv ∧ γ ∈ V (v) then

V (w) = V (w) ∪ {β}
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Computational complexity

Let n = |M | be the number of nodes, m = |R| be the number
of edges, and k be the length of α (the number of operators plus
the number of propositions in α).

Note that |Sub(α)| = k. Hence, the main for loop runs for k times.
The Boolean cases cost O(n), and the modal case costs O(n + m).

Hence, the model checker for modal logic runs in time
O(k · (n + m)) in the worst-case. The complexity is linear in the
product of the length of the formula and the size of the model.
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Computation Tree Logic CTL

CTL is a logic designed to reason about properties holding along
computation paths of structures.

It extends propositional logic with unary temporal operators EX,
AX and binary temporal operators EU, AU. The informal
semantics of the temporal operators is as follows:

• EXα means “α holds at some successor”;

• AXα means “α holds at every successor”;

• EU(α, β) means “along some path α holds until β will hold”;

• AU(α, β) means “ along every path α holds until β will
hold”.
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Computation Tree Logic CTL

CTL formulas are defined as follows:

• > is a CTL-formula;

• a proposition p is a CTL-formula;

• if α and β are CTL-formulas, then ¬α and α ∧ β are
CTL-formulas;

• if α is a CTL-formula, then EXα and AXα are CTL-formulas;

• if α and β are CTL-formulas, then EU(α, β) and AU(α, β) are
CTL-formulas.
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Computation Tree Logic CTL

CTL formulas are interpreted over total Kripke structures
M = 〈M, R, V 〉. A structure is total if every state has at least one
successor.

A computation path of M is an infinite sequence of states
π = s0, s1, . . . such that Rsi, si+1 for every i ≥ 0. We denote by πi

the ith state si of π.
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Computation Tree Logic CTL

Given a total Kripke structures M = 〈M,R, V 〉 and a state s ∈ M ,
the semantics of CTL is as follows:

M, s |= EXα iff ∃s′.Rss′ ∧ M, s′ |= α

M, s |= AXα iff ∀s′.Rss′ → M, s′ |= α

M, s |= EU(α, β) iff ∃π starting from s. ∃j ≥ 0. M, πj |= β ∧
∀ 0 ≤ i < j. M, πi |= α

M, s |= AU(α, β) iff ∀π starting from s. ∃j ≥ 0. M, πj |= β ∧
∀ 0 ≤ i < j. M, πi |= α
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Computation Tree Logic CTL

Shorthands are:

• EFα = EU(>, α);

• AFα = AU(>, α);

• EGα = ¬AF¬α;

• AGα = ¬EF¬α.
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The microwave oven example

Informal specification of a microwave oven functioning:

To cook food in the oven, open the door, put the food inside,

and close the door. Do not put metal containers in the oven.

Press the start button. The oven will warmup for 30 seconds,

and then it will start cooking. When the cooking is done, the

oven will stop. The oven will stop also whenever the door is

opened during cooking. If the oven is started while the door is

open, an error will occur, and the oven will not heat. In such a

case, the reset button may be used.
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Modelling
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~Error
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Close
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~Error
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Close
~Heat
~Error
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warmup Start
Close
Heat
~Error

start cooking
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Close

Heat
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done

open door

start oven
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~Close
~Heat
Error

Start
Close

~Heat
Error
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Specification

1. If the oven heats, then the door is closed:

AG(Heat → Close)
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Specification

1. If the oven heats, then the door is closed:

AG(Heat → Close)

2. Whenever the start button is pushed, eventually the oven will
heat:

AG(Start → AFHeat)
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Specification

1. If the oven heats, then the door is closed:

AG(Heat → Close)

2. Whenever the start button is pushed, eventually the oven will
heat:

AG(Start → AFHeat)

3. Whenever the oven is correctly started, eventually the oven will
heat:

AG((Start ∧ ¬Error) → AFHeat)
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Specification

1. If the oven heats, then the door is closed:

AG(Heat → Close)

2. Whenever the start button is pushed, eventually the oven will
heat:

AG(Start → AFHeat)

3. Whenever the oven is correctly started, eventually the oven will
heat:

AG((Start ∧ ¬Error) → AFHeat)

4. Whenever an error occur, it will be still possible to cook:

AG(Error → EFHeat)
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Verification

AG(Heat → Close) is ?
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Verification

AG(Heat → Close) is true!
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Verification

AG(Start → AFHeat) is ?
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Verification

AG(Start → AFHeat) is false!
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Verification

AG((Start ∧ ¬Error) → AFHeat) is ?
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Verification

AG((Start ∧ ¬Error) → AFHeat) is true!
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Verification

AG(Error → EFHeat) is ?
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Verification

AG(Error → EFHeat) is true!

~Start
~Close
~Heat
~Error

~Start
Close
~Heat
~Error

Start
Close
~Heat
~Error

open doorclose door

start oven

warmup Start
Close
Heat
~Error

start cooking

~Start
Close

Heat
~Error

done

open door

start oven

close door open door
reset

cook

Start
~Close
~Heat
Error

Start
Close

~Heat
Error



An introduction to model checking 64

'

&

$

%

Outline - Class II

1. Modal logic ML

2. Model checking for ML

3. Computation Tree Logic CTL

4. The microwave oven example

5. Model checking for CTL



An introduction to model checking 65

'

&

$

%

Model checking for CTL

We elaborate subformulas in increasing length order (like in the
modal case).

Cases EX and AX are resolved by visiting the successors of the
current state. However, cases EU and AU impose us to visit, in
the worst-case, all the nodes reachable by a path from the current
state. We will take advantage of the following recursive
definitions:

EU(α, β) = β ∨ (α ∧ EXEU(α, β))

AU(α, β) = β ∨ (α ∧ AXAU(α, β))
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Procedure CTL Model Checker(M = 〈M, R, V 〉, α)

for every i = 1, . . . , |α| do

for every β ∈ Sub(α) such that |β| = i do

case on the form of β

? propositional cases

? β = EXγ

for every w ∈ M do

if ∃v. Rwv ∧ γ ∈ V (v) then

V (w) = V (w) ∪ {β}
? β = AXγ

for every w ∈ M do

if ∀v. Rwv → γ ∈ V (v) then

V (w) = V (w) ∪ {β}
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? β = EU(γ, δ)

for every w ∈ M do marked(w) = False

for every w ∈ M do

if w ∈ V (δ) then CheckEU(M, w, γ, δ)

? β = AU(γ, δ)

for every w ∈ M do marked(w) = False

for every w ∈ M do

if not marked(w) then CheckAU(M, w, γ, δ)
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Procedure CheckEU(M, w, γ, δ)

if not marked(w) then

marked(w) = True

V (w) = V (w) ∪ {EU(γ, δ)}
for every v such that Rvw do

if v ∈ V (γ) then CheckEU(M, v, γ, δ)
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Function CheckAU(M, w, γ, δ)

if marked(w) then

if AU(γ, δ) ∈ V (w) then return True else return False

marked(w) = True

if δ ∈ V (w) then

V (w) = V (w) ∪ {AU(γ, δ)}
return True

if γ 6∈ V (w) then

return False

for every v such that Rwv do

if not CheckAU(M, v, γ, δ) then

return False

V (w) = V (w) ∪ {AU(γ, δ)}
return True
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Computational complexity

Let n = |M | be the number of nodes, m = |R| be the number
of edges, and k be the length of α.

The main for loop runs for k times. The Boolean cases cost O(n).
The temporal cases cost O(n + m). Hence, the model checker for
CTL runs in time O(k · (n + m)) in the worst-case.

The complexity is linear in the product of the length of the
formula and the size of the model.
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