
STUDIES IN LOGIC, GRAMMAR AND RHETORIC 17 (30) 2009

Kazimierz Trzęsicki
University of Białystok

TEMPORAL LOGIC MODEL CHECKERS

AS APPLIED IN COMPUTER SCIENCE*

Abstract: Various logics are applied to specification and verification of both
hardware and software systems. Since systems are operating in time, temporal
logic is a proper tool. The problem with finding the proof is the most impor-
tant disadvantage of the proof-theoretical method. The proof-theoretical me-
thod presupposes the axiomatization of logic. Proprieties of a system can also
be checked using a model of the system. A model is constructed with the spe-
cification language and checked using automatic model checkers. The model
checking application presupposes the decidability of the task. The explosion of
the cases that have to be explored is the main disadvantage of this method.
Temporal logic model checking is an algorithmic method that can be used to
check whether a given model (representing a system) satisfies certain properties
(expressed as temporal logic formulas).

Key Words: Temporal Logic, Model Checking.

1. Introduction

Connections between logic and Computer Science, CS, are wide-spread

and varied. Notions and methods from logic can successfully be applied wi-
thin CS. Logic plays the same role in CS as the calculus plays in phy-

sics. Logic is “the calculus of computer science” (Manna & Waldinger 1985,
Cengarle & Haeberer 2000, Connelly, Gousie, Hadimioglu, Ivanov & Hoff-

man 2004).
Logics of programs play more practical role in CS than that of the logic

in “pure” mathematics. On the one hand, logic permeates more and more
the main areas of CS. On the other hand, we may notice that (Kaufmann

& Moore 2004, p. 181):

Until the invention of the digital computer, there were few applications of
formal mathematical logic outside the study of logic itself. In particular, while

* The work was supported by the KBN grant 3 T11F 01130.

ISBN 978–83–7431–231–8 ISSN 0860-150X 13

Kazimierz Trzęsicki

many logicians investigated alternative proof systems, studied the power of
various logics, and formalized the foundations of mathematics, few people used
formal logic and formal proofs to analyze the properties of other systems.
The lack of applications can be attributed to two considerations: (i) the very
formality of formal logic detracts from its clarity as a tool of communication
and understanding, and (ii) the “natural” applications of mathematical logic
in the pre-digital world were in pure mathematics and there was little interest
in the added value of formalization. Both of these considerations changed with
the invention of the digital computer. The tedious and precise manipulation of
formulas in a formal syntax can be carried out by software operating under the
guidance of a user who is generally concerned more with the strategic direction
of the proof.

The logical methods are applicable for the design, specification,1 verifi-

cation2 and optimization of programs, program systems and circuits. Logic
has a significant role in computer programming. While the connections be-

tween modal logic3 and CS may be viewed as nothing more than specific
instances, there is something special to them. The dynamic character of

phenomena of CS has its counterpart in modal logics. In fact, Temporal
Logic, TL, is a multi-modal logic with a time dependent interpretation of

modalities.

1 The specification prescribes what the systems has to do and what not.
2 Some authors distinguish between Validation and Verification and refer to the ove-

rall checking process as V&V. Validation is answering the question: Are we trying to
make the right thing? (are we building the right thing?). Verification (functional correct-
ness) answers the question: Have we made what we were trying to make? (are we building
the thing right?) Verification methods aim at establishing that an implementation satisfies
a specification (Baier & Katoen 2008, p. 13). The different characterizations of verification
and validation originate from Boehm (1981). In general methodology of sciences the term
“verification” denotes establishing correctness. The term “falsification” (or “refutation”)
is used in meaning: to detect an error. In CS “verification” covers both meanings and
refers to the two-sided process of determining whether the system is correct or erroneous.

For Dijkstra (1989) the verification problem is distinct from the pleasantness pro-
blem which concerns having a specification capturing a system that is truly needed and
wanted. Emerson observes that (2008, p. 28):

The pleasantness problem is inherently pre-formal. Nonetheless, it has been found
that carefully writing a formal specification (which may be the conjunction of many
sub-specifications) is an excellent way to illuminate the murk associated with the
pleasantness problem.

3 The traditional modal logic deals with three ‘modes’ or ‘moods’ or ‘modalities’ of
the copula ‘to be’, namely, possibility, impossibility, and necessity. Related terms, such as
eventually, formerly, can, could, might, may, must, are treated in a similar way, hence by
extension, logics that deals with these terms are also called modal logics.

The basic modal operator � (necessarily) is not rigidly defined. Different logics are
obtained from its different definitions of it. Here we are interested in temporal logic that
is the modal logic of temporal modalities such as: always, eventually.

14

Temporal Logic Model Checkers as Applied in Computer Science

In 1974, the British computer scientist Rod M. Burstall first remarked

on the possibility of application of modal logic to solve problems of CS4. The
Dynamic Logic of Programs has been invented by Vaughan R. Pratt (1980):

In the spring of 1974 I was teaching a class on the semantics and axiomatics
of programming languages. At the suggestion of one of the students, R. Mo-
ore, I considered applying modal logic to a formal treatment of a construct
due to C. A. R. Hoare, “p{a}q”, which expresses the notion that if p holds
before executing program a, then q holds afterwards. Although I was skepti-
cal at first, a weekend with Hughes and Cresswell5 convinced me that a most
harmonious union between modal logic and programs was possible. The union
promised to be of interest to computer scientists because of the power and
mathematical elegance of the treatment. It also seemed likely to interest mo-
dal logicians because it made a well-motivated and potentially very fruitful
connection between modal logic and Tarski’s calculus of binary relations.

This approach was a substantial improvement over the existing approach ba-

sed on the pre-condition/post-condition mechanism provided by Hoare’s lo-
gic.6 Kripke models, the standard semantic structure on which modal langu-

ages are interpreted, are nothing but graphs. Graphs are ubiquitous in CS.
The connection between the possible worlds of the logician and the

internal states of a computer is easily described. In possible world semantics,
φ is possible in some world w if and only if φ is true in some world w′

accessible to w. Depending on the properties of the accessibility relation
(reflexive, symmetric, and so on), there will be different theorems about

possibility and necessity. The accessibility relation of modal logic semantics
can thus be understood as the relation between states of a computer under

the control of a program such that, beginning in one state, the machine will
(in a finite time) be in one of the accessible states. In some programs, for

instance, one cannot return from one state to an earlier state; hence state
accessibility here is not symmetric.

4 Charles Leonard Hamblin a pioneer computer scientist, a prominent philosopher
and logician is considered as one the founders of the modern temporal logic (and modern
logic). His contributions to applied and theoretical computing are multifold. Hamblin was
first to propose an axiomatic account of time based on intervals (Hamblin 1969). This idea
has been influential in AI, both as a basis for reasoning about time, and, when extended
to multiple dimensions, as a basis for reasoning about space (Allen 1984). For more see
(Barton 1970, Allen 1985, Williams 1985).
5 The book Pratt is talking about is (Hughes & Cresswell 1968).
6 Hoare’s logic views a program as a transformation from an initial state to a final

state. Such view cannot be applied successfully, where the computation does not bring to
a final state. Thus it is not eligible to tackle problems of reactive or non-terminating sys-
tems, such as operating systems, protocols, concurrent programs, and hardware systems.

15

Kazimierz Trzęsicki

The question of using TL to software engineering was undertaken by

Kröger (1977, 1987, 1991, 2008). The development of TL as applied to CS
is due to Amir Pnueli7. He was inspired by “Temporal Logic”, a book

written by Rescher and Urquhart (1971).8 “The Temporal Logic of Pro-
grams” (1977), a paper by Pnueli, is the classical source of TL for specifica-

tion and verification of programs. This work is commonly seen as a break-
through in using of TL in CS. Amir Pnueli argues that temporal logic can

be used as a formalism to reason about the behavior of computer programs
and, in particular, of non-terminating concurrent systems.9 According to

Bochmann (Clarke 2008, p. 5):

temporal logic has brought a more elegant way to talk about liveness and
eventuality; in the protocol verification community we were talking about re-
achable deadlock states (easy to characterize) or undesirable loops (difficult to
characterize).

In general, properties are mostly describing correctness or safety of the
system’s operation. For Clarke (2008, p. 1) works of Pnueli (1977), Owicki

and Lamport (1982):

demonstrated convincingly that Temporal Logic was ideal for expressing con-
cepts like mutual exclusion, absence of deadlock, and absence of starvation.

There is a difference between logician and computer scientists approach

to systems of logics (Bradfield & Stirling 2001, p. 315):

Decidability and axiomatization are standard questions for logicians; but for
practitioner, the important question is model-checking.

In the opinion of Dijkstra:10

The situation of programmer is similar to the situation of mathematician,
who develops a theory and proves results. [. . .] One can never guarantee that

7 Pnueli received the Turing Award in 1996:

for seminal work introducing temporal logic into computing science and for outstan-
ding contributions to program and system verification.

8 See (Hasle & Øhrstrøm 2004, p. 222).
9 A system is said to be concurrent when its behavior is the result of the interaction

and evolution of multiple computing agents. Interacting processes do not known about
the internal state of the others. The initial interest in concurrent systems was motivated
by the speed improvements brought forth by multi-processor computers.
10 See Dijkstra E. W., Programming Considered as a Human Activity, http://www.cs.

utexas.edu/users/EWD/transcriptions/EWD01xx/EWD117.html.

16

Temporal Logic Model Checkers as Applied in Computer Science

a proof is correct, the best one can say, is: “I have not discovered any mistakes”.
[. . .] So extremely plausible, that the analogy may serve as a great source of
inspiration. [. . .]

Even under the assumption of flawlessly working machines we should ask our-
selves the questions: “When an automatic computer produces results, why do
we trust them, if we do so?” and after that; “What measures can we take
to increase our confidence that the results produced are indeed the results
intended?”

In another work (1968, p. 6), Dijkstra says:

Program testing can be used to show the presence of bugs, but never to show
their absence.

Although the theory spoke of verification, if we apply it, we soon realize

that its real value lay in falsification.
The verification problem can be said to have been born at the same

time as computer science itself. Formulated in terms of Turing Machines,
the verification problem was already considered by Turing in the work on

the Halting problem (1936–37). He demonstrated that there is no general
method of proving the correctness of any program. Therefore, that paper

was, in a way, the death of the problem, since it was shown that the task
is theoretically unmechanizable. So without knowing anything about the

particulars of a given product, one thing is generally safe to assume: it
has bugs. Nevertheless as mathematicians did not stop proving theorems as

a result of Gödel’s theorem, computer scientists did not leave recognizing
verification to be a fundamental problem of their subject. It is a millions of

programmers’ daydream: a compiler that automatically detects all the bugs
in the code (Hoare 2003).

Our reliance on the functioning of Information and Communication
Technology, ICT , systems is growing rapidly. Our society is increasingly

dependent on ICT in almost every aspect of daily life. Computer controls
everything possible: from entertainment to work, from children’s toys to
nuclear weapons and from car to space-rocket systems. Often we are not even

aware that computers and software are involved. ICT -based solutions are
becoming ubiquitous and are to be found in several safety-critical systems.

In such cases the reliability cannot be compromised. Defects can be fatal
and extremely costly. Errors in ICT systems may cause not only material

losses, e.g., in e-banking, but also may be dangerous for life, e.g., in health
care, transportation, especially air and space flights.11 Correctness of design

11 Due to a design error in the control software of the radiation therapy machine

17

Kazimierz Trzęsicki

is a very important factor of systems for preventing economical and human

losses caused by minor errors. The need for reliable hardware and software
systems is critical. The reduction of errors in ICT systems is one of the

most important challenges of CS (Kröger & Merz 2008, p. V). It has long
been known that (Emerson 2008, p. 27):

computer software programs, computer hardware designs, and computer sys-
tems in general exhibit errors. Working programmers may devote more than
half of their time on testing and debugging in order to increase reliability.
A great deal of research effort has been and is devoted to developing improved
testing methods. Testing successfully identifies many significant errors. Yet,
serious errors still afflict many computer systems including systems that are
safety critical, mission critical, or economically vital. The US National Insti-
tute of Standards and Technology has estimated that programming errors cost
the US economy $60B annually.12

The reliability of ICT systems is no longer a luxury but an urgent necessity.

Despite efforts of ICT engineers errors are inevitable. Though they are
generally unpredictable (Holzmann 2002)

. . .within fixed domain we can often predict fairly accurately just how many
mistakes will be made. For programmers in industrial software development,
the residual software defect ratio (the number of latent faults that remain
in the code at the end of the development process) is normally somewhere
between 0.5 and 5 defects per one thousand lines of non-comment source code
(Holzmann 2001). . . .Even at a low residual defect density of 0.1 defect per one

Therac-25 in the period 1985–1987 at least 6 cases of overdosis (100-times dosis) took
place and three cancer patients died. A famous example: the Ariane-5 launch on June 4,
1996; it crashed 36 seconds after the launch due to a conversion of a 64-bit floating point
into a 16-bit integer value. Costs: more than 500 million US$. In the report (Lions, J. L.
et al. 1996) we read:

The exception which occurred was not due to random failure but a design error.
The exception was detected, but inappropriately handled because the view had
been taken that software should be considered correct until it is shown to be at
fault. The Board has reason to believe that this view is also accepted in other areas
of Ariane-5 software design. The Board is in favor of the opposite view, that software
should be assumed to be faulty until applying the currently accepted best practice
methods can demonstrate that it is correct.

In 2008 it was announced that the Royal Navy was ahead of schedule for switching their
nuclear submarines to a customized Microsoft Windows XP solution dubbed Submarine
Command System Next Generation. In this case any error may have an unimaginable
aftermath. Let us add that US Navy computer solutions are based on Linux.
12 See: National Institute of Standards and Technology, US Department of Com-
merce, “Software Errors Cost U.S. Economy $59.5 Billion Annually”, NIST News Release,
June 28, 2002.

18

Temporal Logic Model Checkers as Applied in Computer Science

thousand lines of code, a ten million line source package will have an expected
103 latent defects.

Therefore, the main challenge for CS is to provide formalisms, techniques,
and tools that will enable the efficient design of correct and well-functioning

systems despite their complexity. Summarizing, we may repeat after Henk
Barendregt:

It is fair to state, that in this digital era correct systems for information pro-
cessing are more valuable than gold.

ICT systems are more and more complicated. Their complexity grows
rapidly. Large scale software is generally written by different groups of pro-

grammers, and integration testing becomes a major problem. Verification
of digital hardware designs has become one of the most expensive and

time-consuming components of the current product development cycle. The
verification which requires exhaustive search is hard to deal with bigger state

spaces. To establish confidence in ICT systems, traditional testing and si-
mulation are used. However, testing on a representative set of scenarios is

often inadequate. Simulation and testing, unlike verification, can only indi-
cate errors and can never show the absence of errors. These methods usually

involve providing certain inputs and observing corresponding outputs. Te-
sting and simulation can be a cost efficient way of minimizing errors. Howe-

ver, covering all possible interactions and potential errors is rarely feasible.
Moreover, usually empirical testing and simulation is expensive, not ulti-
mately decisive and sometimes excluded for economical or ethical reasons.

Formal methods are the most notable efforts to guarantee the correctness of
system design and behaviors. Thus, the formal specification and computer

aided validation and verification are more and more indispensable.13 There
is an increasing interest in formal methods. Formal methods have gained

popularity in industry since the advent of the famous Intel Pentium FDIV
bug in 1994, which caused Intel to recall faulty chips and take a loss of

$475 million (Coe, Mathisen, Moler & Pratt 1995). Digital computers are
intended to be abstract discrete state machines and such machines and their

software are naturally formalized in mathematical logic.

13 Computer Aided Verification, CAV , a subdiscipline of CS, is concerned with en-
suring that software and hardware systems operate correctly and reliably. The Inter-
national Conference on Computer Aided Verification is dedicated to the theory and
practice of computer aided formal analysis methods for hardware and software systems,
http://www.cav-conference.org.

19

Kazimierz Trzęsicki

Given the formal descriptions of such systems, it is then natural to reason
about the systems by formal means. And with the aid of software to take
care of the myriad details, the approach can be made practical. Indeed, given
the cost of bugs and the complexity of modern hardware and software, these
applications cry out for mechanical analysis by formal mathematical means.
(Kaufmann & Moore 2004, p. 181–182)

The reliability of ITC systems is a key issue in the design processes.

Errors should already be detected at the design stage. It is very impor-
tant to specify the correctness property of system design and behavior,

and an appropriate property must be specified to represent a correct re-
quirement. More time and effort is spent on validation than on construc-

tion. It is estimated that 70% of design-time is spent to minimize the
risk of errors (Schneider 2003), see (Miller, Donaldson & Calder 2006).

30% to 50% of software project costs is devoted to testing. The problem
of verification is the subject of interdisciplinary investigations. “Verifica-

tion”, a special interest group of the Gigascale Systems Research Center
declares, http://www.gigascale.org/sig/sig verification/:

We welcome interactions with groups in our sponsor companies involved in all
aspects of design verification – both pre-silicon verification using simulation,
formal verification and emulation, as well as post-silicon debug.

Such concerns have motivated the industry to consider alternative techni-
ques for verification, especially those based on formal methods.

Formal methods, model checkers as well as theorem provers and proof
assistants, are proposed as efficient, safe and less expensive tools. Effec-

tive mechanized reasoning could improve the quality of computer aided
design in many fields of human activity, giving enormous economic be-

nefits and making automated devices safer. According to Emerson (2008,
pp. 27–28):

Given the incomplete coverage of testing, alternative approaches have been
sought. The most promising approach depends on the fact that programs and
more generally computer systems may be viewed as mathematical objects with
behavior that is in principle well-determined. This makes it possible to specify
using mathematical logic what constitutes the intended (correct) behavior.
Then one can try to give a formal proof or otherwise establish that the program
meets its specification. This line of study has been active for about four decades
now. It is often referred to as formal methods.

20

Temporal Logic Model Checkers as Applied in Computer Science

2. Formal methods of ICT systems verification

2.1. Formal methods

Formal methods are the applied logic and mathematics for modeling
and analyzing of ICT systems. Formal methods include: formal specifica-

tion, specification analysis and proof, transformational development, and
program verification. In the case of formal methods, implementation is un-

derstood as an abstract model of the system to be verified and specification
refers to some property of the system expressed in a suitable formula of

specification language. The principal benefits of formal methods are in re-
ducing the number of faults in systems. Consequently, their main area of

applicability is in critical systems engineering. There have been several suc-
cessful projects where formal methods have been used in this area. The

use of formal methods is most likely to be cost-effective because high sys-
tem failure costs must be avoided. Formal methods are highly recommen-

ded by IEC (International Electrotechnical Commission), ESA (European
Space Agency) for safety-critical software. As it is remarked by Emerson

(2008, p. 37), formal verification is becoming a staple of CS and electri-
cal engineering education. At the same time there is ever growing research

interest in model checking. Nevertheless, these methods have not become
the only stream software development techniques. Other software engine-

ering techniques have been successful at increasing system quality. Market
changes have made time-to-market rather than software with a low error

count the key factor. Formal methods do not reduce time to market. Mo-
reover, the scope of formal methods is limited. They are not well-suited

to specifying and analyzing user interfaces and user interaction. Formal
methods are still hard to scale up to large systems. In spite of this, the

need for formal methods has not been reduced. The toil of several deca-
des, and the ingenuity of researchers working in the area of formal methods

has led to the discovery of powerful and efficient techniques for ICT sys-
tems analysis and verification. These, combined with the raw computing

horsepower available today, have enabled researchers to devise very efficient
formal tools.

The formal methods to be appropriate need to be properly adapted. For
building automated tools for verifying systems, one aims at simpler forma-

lisms to specify the behavior of the system to be analyzed. Every program,
at its lowest level, can be described as a set of states and a binary transition

relation. The set of states corresponds to the states the program can be in,
and the two states are in the transition relation if the first can transition to

the second in one step during the execution of the program. Classical me-

21

Kazimierz Trzęsicki

thods mirror the static nature of mathematical notions. Dynamic behavior

of programs requires another approach. Temporal logic and its language
are of particular interest in the case of reactive14, in particular concurrent

systems.

On the one hand, such specification languages should be simple and easy to
understand, such that non-experts also are able to use them. On the other
hand, they should be expressive enough to formalize the stepwise behavior of
the processes and their interactions. Furthermore, they have to be equipped
with a formal semantics which renders the intuitive meaning of the language
commands in an unambiguous manner. (Baier & Katoen 2008, p. 63)

The language of TL is one that fulfills three important criteria. It:
• has the ability to express all sorts of specification (expressiveness) inde-
pendently of the programming language to be used for implementation
purposes;

• has reasonable complexity to evaluate the specified rules (complexity);
• due to its resemblance to natural language is easy to learn (pragmatics).
In many areas of CS understanding, TL has become as useful and profit-
able as understanding the algorithms themselves. The knowledge of TL is

indispensable in practice, though, as it is remarked by Schnoebelen (2002):

In today’s curricula, thousands of programmers first learn about temporal logic
in a course on model checking!

A raport on the use of formal methods prepared by FAA (Federal Aviation

Authority), and NASA (North-Atlantic Space Agency) concludes:

Formal methods should be part of the education of every computer scientist
and software engineer, just as the appropriate branch of applied maths is
a necessary part of the education of all other engineers.

TL languages can be used for specification of a wide spectrum of ICT

systems. Methods of TL can be applied to verification (Manna & Pnu-
eli 1992, 1995a). In the case of reactive systems, TL is more useful than

14 Systems can be divided into two categories: transformational programs (data inten-
sive) and reactive systems (control intensive). The systems of the second type maintain an
ongoing interaction with their environment (external and/or internal stimuli) and which
ideally never terminate. Their specifications are typically expressed as constraints on their
behavior over time. Examples of reactive systems include microprocessors, operating sys-
tems, banking networks, communication protocols, on-board avionics systems, automotive
electronics, and many modern medical devices.

22

Temporal Logic Model Checkers as Applied in Computer Science

Floyd-Hoare logic that is better in the case of “input-output” programs.

TL languages (Kröger & Merz 2008, p. 181):

provide general linguistic and deductive frameworks for state systems in the
same manner as classical logics do for mathematical systems.

Logic may be axiomatically or semantically presented. The former presen-

tation is concerned with the axioms and rules defining the notion of a proof.
The latter presentation is oriented to building a model. The duality in the

presentation has led to proof-theoretical and model-theoretical approaches
(Clarke, Wing, Alur, Cleaveland, Dill, Emerson, Garland, German, Guttag,

Hall, Henzinger, Holzmann, Jones, Kurshan, Leveson, McMillan, Moore,
Peled, Pnueli, Rushby, Shankar, Sifakis, Sistla, Steffen, Wolper, Woodcock

& Zave 1996). Formal methods can be divided into two basic categories of
1. theorem proving and proof checking,

and
2. model-checking.

2.2. Proof-theoretical approach

Already in the works of Turing, the mathematical methods were applied
to check correctness of programs (Randell 1973). By the end of the sixties

of the last century, Floyd (1967), Hoare (1969) and Naur (1966) proposed
axiomatic proving sequential programs with respect to their specification.

E. G. Dijkstra extended Hoare’s ideas (Dijkstra 1975). Proof-theoretical
or deductive method based on TL was proposed by Pnueli and Manna

(1992, 1995a). The benefits were achieved in the hardware sector (Kauf-
mann & Moore 2004, Brock & Hunt 1997). Correctness of ICT system can

be demonstrated through logical proving about system constraints or requ-
irement for safe system behavior. The verification problem is represented

as a theorem in a formal deductive theory. Such a theory consists of formal
language in which formulas are written and a set of axioms and a set of infe-

rence rules. Propositions specifying the ICT system are joined as premisses
to the thesis of the deduction system. Proofs can be “described” a variety of

ways, e.g., by giving the inference steps, by specifying tactics or strategies to
try, by stating the “landmark” subgoals or lemmas to establish, etc. Often,

combinations of these styles are used within a single large proof project.
Verification is positive if the proposition expressing the desired property is

proved. Correctness of formal derivations could be “mechanically” checked,
but finding a proof needs some experience and insight. It requires highly

skilled mathematical logician’s intervention.

23

Kazimierz Trzęsicki

At the time of its introduction in the early 1980’s, a “manual” proof-

theoretic approach was a prevailing paradigm for verification. Nowadays,
proofs are supported by semi-automatic means,15 provers and proof checkers.

Interactive provers are used to partially automate the process of proving,
nevertheless (Kaufmann & Moore 2004, pp. 182–183):

all proofs of commercially interesting theorems completed with mechanical
theorem proving systems have one thing in common: they require a great deal
of user expertise and effort.

For example (Kaufmann & Moore 2004, p. 182):

The proof, constructed under the direction of this paper’s authors and Tom
Lynch, a member of the design team for the floating point unit, was completed
9 weeks after the effort commenced. About 1200 definitions and theorems were
written by the authors and accepted, after appropriate proofs were completed
by the ACL216 theorem prover.

Among the mechanical theorem proving systems used to prove com-
mercially interesting theorems about hardware designs are Acl2 (“Acl2”

stands for “A Computational Logic for Applicative Common Lisp”)17,
Coq18, Hol19, Hol Light20, Isabelle21, and Pvs22. The proof assistant ap-

proach is a subject of research projects, e.g. BRICKS, http://www.bsik-
bricks.nl/researchprojects afm4.shtml.

The proof-theoretic framework is one-sided, if the program is really
incorrect, the proof systems do not cater for proving incorrectness. It is

possible only to prove that a proposition is a thesis. If we do not have a proof,
we are entitled only to say that we could not find a proof, and nothing

more. Theorem provers do not provide concrete counterexamples. However,
theorem proving can deal with an infinite state space, i.e., system with

infinitely many configurations. It is not the only advantage of the method.

15 Until the artificial intelligence problem is solved, human interaction will be impor-
tant in theorem proving. For this reason it is more realistic to think about theorem provers
as proof assistants and refer to them as proof checkers (Kaufmann & Moore 2004).
16 See (M. Kaufmann, Manolios & Moore 2000, Boyer & Moore 1979).
17 See http://www.cs.utexas.edu/~moore/acl2/, (Kaufmann & Moore 2004).
18 See http://coq.inria.fr/.
19 See http://www.cl.cam.ac.uk/research/hvg/HOL/, (Gordon & Melham 1993).
20 See http://www.cl.cam.ac.uk/~jrh13/hol-light/.
21 See http://www.cl.cam.ac.uk/research/hvg/Isabelle/.
22 See http://pvs.csl.sri.com/.

24

Temporal Logic Model Checkers as Applied in Computer Science

This method is also indispensable in some intractable cases of finite state

systems. Though today’s model checkers are able to handle very large state
spaces, eg. 10120 [(Kaufmann & Moore 2004, p. 183), (Clarke, Grumberg,

Jha, Lu & Veith 2001)] but it does not mean that these states are explored
explicitly. The above discussed theorem about FDIV (see p. 19) could be

checked by running the microcode on about 1030 examples. Since in this
case there are no reduction techniques, if it is assumed that one example

could be checked in one femtosecond (10−15 seconds – the cycle time of
a petahertz processor), the checking of the theorem will take more than

107 years (Kaufmann & Moore 2004, p. 183).
For Emerson (2008, p. 28):

The need to encompass concurrent programs, and the desire to avoid the dif-
ficulties with manual deductive proofs, motivated the development of model
checking. In my experience, constructing proofs was sufficiently difficult that
it did seem there ought to be an easier alternative.

Though the proof-theoretic approach is more elegant, the best results

have been obtained by model-theoretic or hybrid23 approaches. Already
C. A. R. Hoare, argued that formal proofs of correctness represent only one

of many possible options on the road to reliable ICT systems (Hoare 1996).

2.3. Model-theoretical approach

The basic papers on the use of Temporal Logic Model Checking were

written in the early 1980’s. Both, the idea of automatic verification of con-
current programs based on model-theoretic approach and the term “model

checking” were introduced by Clarke and Emerson in (1982a),24 and in-
dependently the use of model checking as a device of CS was conceived

by Quille and Sifakis (1982).25 The idea was developed in works by Clarke,
Emerson, Sistla and others (Clarke, Emerson & Sistla 1983, Clarke, Emerson

23 Hybrid methods combine both the proof- and model-theoretical approaches.
24 See (Emerson 2008, p. 9). Allen Emerson wrote his PhD dissertation under Ed
Clarke’s guidance.
25 E. M. Clarke and E. A. Emerson interpreted concurrent system as finite Kripke
structure/transition system and properties were expressed in CTL (Computational Tree
Logic) language. J.-P. Queille and J. Sifakis based on Petri nets and properties were
expressed in language of branching time logic. Edmund M. Clarke jr. (CMU, USA), Al-
len E. Emerson (Texas at Austin, USA), Joseph Sifakis (IMAG Grenoble, France) were
granted with ACM Turing Award 2007. Jury justification:

For their roles in developing Model-Checking into a highly effective verification tech-
nology, widely adopted in the hardware and software industries.

25

Kazimierz Trzęsicki

& Sistla 1986, Clarke, Grumberg & Peled 1999, Bidoit, Finkel, Laroussinie,

Petit, Petrucci & Schnoebelen 2001, Clarke & Wing 1996). Model checking
was given crucial impetus by Kenneth L. McMillan who, using the tech-

nique of BDDs (Binary Decision Diagrams) introduced and popularized
by Randy Bryant, developed the highly efficient Symbolic Model Checking

approach (McMillan 1993).
Model checking is a verification technique that is preferred to theorem

proving technique. This method, similarly as it is in the case of logical
calculi, is more effective comparatively to proof-theoretic method. It is one of

the most active research areas because its procedures are automatic and easy
to understand. This automated technique for verification and debugging has

developed into a mature and widely used approach with many applications
(Baier & Katoen 2008, p. xv).

According to Edmund M. Clarke (2008, p. 1):

Model Checking did not arise in a historical vacuum. There was an important
problem that needed to be solved, namely concurrent program verification.

In another place, he continues:26

Existing techniques for solving the problem were based on manual proof con-
struction from program axioms. They did not scale to examples longer than
a page and were extremely tedious to use. By 1981 the time was ripe for a new
approach to the problem, and most of necessary ideas were already in place.

Model checking bridges the gap between theoretical computer science

and hardware and software engineering. Model checking does not exclude
the use of proof-theoretical methods, and conversely, the proof-theoretical

methods do not exclude using of model checking. The hybrid approach has
many advantages. In practice, one of theses methods is complementary to

the other, at least at the heuristic level.
On the one hand, failed proofs can guide to the discovery of countere-

xamples. Any attempt of proving may be forego by looking for counterexam-
ples. Counterexamples of consequences of a theorem can help to reformulate

it. Examples may aid comprehension and invention of ideas and can be used
as a basis for generalization being expressed by a theorem. The role of deci-

sion procedures is often essential in theorem proving. There has been consi-
derable interest in developing theorem provers that integrate SAT solving

algorithms. The efficient and flexible incorporating of decision procedures

26 See http://events.berkeley.edu/index.php/calendar/sn/coe.html?event.

26

Temporal Logic Model Checkers as Applied in Computer Science

into theorem provers is very important for their successful use. There are

several approaches for combining and augmenting of decision procedures.
On the other hand, the combination of model checking with deductive

methods allows the verification of a broad class of systems and, as it is in
the case of e.g. STeP,27 not restricted to finite-state systems. The question

of combining proof-theoretical and model checking methods and the gene-
ral problem of how to flexibly integrate decision procedures into heuristic

theorem provers are subjects of many works (Boyer & Moore 1988).
Any verification using model-based techniques is only as good as the

model of the system. It is one of the caveat of the model checking paradigm
that the results of verification are only as reliable as the accuracy of the

model which has been constructed for analysis. Thus, in model checking the
first task is to convert a system to a formal model accepted by a model

checker. It is a model in the form of a Kripke structure28 or labeled graph
of state transitions29 – that has to accurately describe the behavior of the

checked system. To do this, formal languages defined by formal semantics
must be used. To draw an abstract model many techniques are applied.

Many methods are used to reduce states of a system. In practice, this process
is not automated.

The second task is to specify properties that must be satisfied by the
real system. Mechanically assisted verification of properties of a complex

system requires an accurate formulation of these properties in a formal lan-
guage with defined semantics. The specification usually is given in some

logical formalism. Generally, temporal logics are used to represent a tempo-
ral characteristic of systems.

A model checker is a device which is to decide whether the system sa-
tisfies its properties as expressed by temporal logic formulas. The answer is

positive only if all runs are models of the given temporal logic formula. The

27 See p. 83.
28 Kripke or relational semantics of modal logics has been conceived in the fifties of
the last century. This semantics was philosophically inspired, nevertheless, it has found
application in CS. In CS Kripke structure is associated with a transition system. Because
of the graphical nature of the state-space, it is sometimes referred to as the state graph
associated with the system.

Here we will discuss languages with semantics based on Kripke structure (frame).
Similarly as in modal logics this role may be played by Hintikka frames (Ben-Ari, Manna
& Pnueli 1981). A Kripke frame consists of non-empty set and a binary relation defined
on this set. In modal logics elements of the set are called possible worlds and the relation
is understood as accessibility of one world from another. In the case of TL as applied
in CS the Kripke semantics is based on computational time.
29 A Kripke model is a directed graph where vertices are labeled by sets of atomic
propositions and called states. Edges are called transitions.

27

Kazimierz Trzęsicki

technique is based on the idea of exhaustive exploration of the reachable

state space of a system. For this reason, it can only be applied to systems
with a finite state space, i.e., systems with finitely many configurations, and

– for practical limitations (tractability) – with not too many states. The ve-
rification is completely automatic with the abstract model and properties.

Thus, it is possible to verify the correctness of very complicated and very
large systems, manual checking of which is almost not possible. We can verify

a complex system as a hardware circuit or communication protocol automa-
tically. The verification results are correct and easy to analyze. However, it

does need human assistance to analyze the result of model checking. If logic
is complete with respect to the model and is decidable, then in the case of

any proposition that specifies the behavior of the system the procedure of
checking is finite. But if the model is too detailed the verification becomes

intractable. A model checker verifies the model and generates verification re-
sults, “True” or counterexample if the result is “False”. If the proposition is

satisfied, the system is verified. If the proposition is not valid, the construc-
tion results in a counterexample – this is one of the important advantages of

model checking. The counterexample provides information about an error
(bug) in the system. The model checker can produce a counterexample for

the checked property, and it can help the designer in tracking down where
the error occurred.

The counterexample gives us a new precondition or a negative result
in the following way: when we obtain a counterexample, we analyze it and

as far as this trace could not occur in real system, we add new precondi-
tions to the formula. We may obtain a counterexample again, which often

results to many preconditions. In this case, analyzing the error trace may
require a modification to the system and reapplication of the model check-

ing process. The verification model is traditionally constructed by hand,
and is therefore subject to human mistakes. It means that error can also

result from incorrect modeling of the system or from an incorrect specifica-
tion. The error trace can also be useful in identifying and fixing these two

problems.
Model checking comes in two varieties, depending on the way the pro-

prieties are expressed. If theory of automata is employed, the system as
well as its specification are described by automaton. Questions concerning

system and its specification are reduced to the question about the behavior
of automaton. In other words, automata theoretic approach means:

• specifying systems using automata
• reducing model checking to automata theory.
In the case of TL model checking, the system is modeled as a finite-state

28

Temporal Logic Model Checkers as Applied in Computer Science

automaton, while the specification is described in temporal language. A mo-

del checking algorithm is used to verify whether the automaton has pro-
per temporal-logical proprieties. In other words, if TL is applied (Miller

et al. 2006, p. 2–3):

Model checking involves checking the truth of a set of specifications defined
using a temporal logic. Generally, the temporal logic that is used is either
CTL∗ or one of its sublogics, CTL [. . .] (Clarke et al. 1986) or LTL [. . .]
(Pnueli 1981).

Various model checkers are developed. They are applied to verifica-
tion of large models, to real-time systems, probabilistic systems, etc. (Holz-

mann 1991, Kurshan 1995, Clarke et al. 1999, Bérard, Bidoit, Finkel, La-
roussinie, Petit, Petrucci & Schnoebelen 2001) – see (Schnoebelen 2002).

Despite being hampered by state explosion, since its beginning model chec-
king has had a substantive impact on program verification efforts.

Verification by model checking has gained popularity in industry for
two reasons:

• the procedure can be fully automated and
• counterexamples are automatically generated if the property being ve-
rified does not hold.

Software is usually less structured than hardware and, especially in the case

of concurrency, asynchronous. Thus, the state space is bigger in the case
of software than in hardware. For this reason, in the case of hardware, the

state explosion problem is less serious (Clarke 2008, p. 18).
It is worth mentioning some of the applications of model checking else-

where. These include understanding and analyzing legal contracts, which
are after all, prescriptions for behavior (Daskalopulu 2000); analyzing pro-

cesses in living organisms for systems biology (Heath, Kwiatowska, Nor-
man, Parker & Tymchysyn 2006); e-business processes, such as accounting

and workflow systems (Wang, Hidvegi, Bailey & Whinston 2000). Model
checking has also been employed for tasks in artificial intelligence, such as

planning (Giunchig lia & Traverso 1999). Conversely, techniques from ar-
tificial intelligence related to SAT-based planning (Kautz & Selman 1992)

are relevant to (bounded) model checking.
Let us repeat after Emerson some interesting remarks concerning model

checking (Emerson 2008, p. 42):

Edsger W. Dijkstra commented to me that it was an “acceptable crutch” if one
was going to do after-the-fact verification. When I had the pleasure of meeting
Saul Kripke and explaining model checking over Kripke structures to him, he

29

Kazimierz Trzęsicki

commented that he never thought of that. Daniel Jackson has remarked that
model checking has “saved the reputation” of formal methods.

It should be emphasized that a model checker caters for both verification
and refutation of correctness properties. An important strength of model

checkers is that they can readily provide a counter-example for most errors
(Emerson 2008, p. 40). The real value of model checking is that it is an

uncommonly good debugger – reductio ad bug30.
As model checking verifies models and not realizations, testing is an

essential complementary technique. Moreover, even if correctness of a system
is checked it is not guaranteed to yield correct results: as with any tool,

a model checker may contain software defects. Despite all the mentioned
limitations, model checking is an effective technique to expose potential

design errors.
In this article we survey and classify temporal logic model checking

methods and model checkers. According to Emerson (2008, p. 31):

. . . temporal logic has been a crucial factor in the success of model checking.
We have one logical framework with a few basic temporal operators permitting
the expression of limitless specifications. The connection with natural language
is often significant as well. Temporal logic made it possible, by and large, to
express the correctness properties that needed to be expressed. Without that
ability, there would be no reason to use model checking. Alternative temporal
formalisms in some cases may be used as they can be more expressive or
succinct than temporal logic. But historically it was temporal logic that was
the driving force.

2.4. State explosion problem

Model checking has some practical disadvantages. The most serious
(and obvious) drawback of model checking is the combinatorial explosion

of system states, commonly known as the state explosion problem (Clarke
et al. 1999, Clarke & E. 1982b, McMillan 1993). Model checking algorithms

rely upon the construction of models representing all system states. Finite
state representation increases exponentially with the number of variables

and concurrent components, therefore the number of states that have to
be explored is growing exponentially with respect to the number of sta-

tes of processes in the system. A concurrent program with k processes can

30 For more about strengths and weaknesses of model checking see (Baier & Katoen
2008, pp. 14–16).

30

Temporal Logic Model Checkers as Applied in Computer Science

have a state graph of size exp(k). For instance, in a banking network with

100 automatic teller machines each controlled by a finite state machine with
10 states, we can have 10100 global states. Thus, even for small sized exam-

ples, the state space becomes infeasible. This problem is caused when the
size of the state space generated becomes so large that it is impossible to

represent it in the computer memory given current memory configuration of
computers. Systems with infinite state spaces, in general, cannot be handled.

Typical hardware and software systems contain many more states than
can be practically explored by exhaustive methods. Nevertheless, model

checking is an effective technique to expose potential design errors. Since
the size of the state space grows exponentially with the number of pro-

cesses, model checking techniques based on explicit state enumeration can
only handle relatively small examples. Detailed application-specific formal

analysis is required to invent appropriate abstraction and reduction techni-
ques. These techniques allow model checkers to detect and avoid exploring

many “equivalent” behaviors. Most current research in model checking is
therefore devoted to combating state explosion. To cope with the problem,

several techniques of model abstraction and state-space reduction have been
developed. Various approaches and techniques (e.g., compression, reduction,

aggregation, decomposition) are employed to reduce computational comple-
xity (Schnoebelen 2002). Significant progress was made around 1990: both

Symbolic Model Checking and the Partial Order Reduction were developed
about this time.

To reduce the memory required to store each state, e.g., symbolic state
representation is used:31 if we can describe the set of states with a smaller

number of symbolic states, we can verify larger systems. Symbolic methods
are based on Binary Decision Diagram (BDD) or its variants (Clarke, Fu-

jita, McGeer, McMillan, Yang & Zhao 1993). With sophisticated implemen-
tations and refinements of symbolic model checking, it became possible to

verify systems of industrial size, and to detect errors that can hardly be
found using simulation. To reduce the number of states or paths explored,

the methods of on-the-fly (Bouajjani, Tripakis & Yovine 1997), abstrac-
tion (Clarke, Grumberg & Long 1994, Daws & Tripakis 1998), partitioning

(Burch, Clarke & Long 1991), partial order reduction (Willems & Wol-
per 1996, Gerth, Kuiper, Peled & Penczek 1995) or symmetry reduction are

applied (Clarke et al. 1999, Miller et al. 2006).

31 In the case of enumerative approach, each state of the system is represented expli-
citly.

31

Kazimierz Trzęsicki

As it is stated by Emerson (2008, p. 39):

A remaining significant factor in ameliorating state explosion is the exponential
growth in computer power, speed and especially memory size, expressed in
Moore’s law32 which has obtained over the past quarter century. For example,
in 1981 the IBM PC had less than 1M (random access) memory while today
many PC’s have 1G or more memory. Such a 1000-fold or larger increase in
memory permits significantly larger programs to be handled.

The limits of models checking are pushed by employing work-station clu-
sters and GRIDs, e.g. the V eriGEM project aims at using the storage

and processing capacity of clusters of workstations on a nation-wide scale,
http://www.bsik-bricks.nl/research projects afm6.shtml.

Despite numerous improvements in model checking techniques, the state
explosion problem remains their main obstacle. Recent development in ma-

nufacturing and design of ICT systems pose new challenges for functional
verification methods. Hence, there is a growing need to investigate and de-

velop more robust and scalable verification methods based on novel and
alternative technologies.

3. Temporal logic

Formal verification requires a precise and unambiguous statement of the
properties to be examined; this is typically done in temporal logic. TL pro-

vides a formalism which allows us to reason about how the truth value of
certain assertions changes over time. TL is a form of logic especially ap-

propriate for statements and reasoning about behaviors of order in time.
TL is also precisely defined while limited in expressive power especially

in comparison to formalisms such as First Order Arithmetic plus Monadic
Predicates; yet, it seems ideally suited to describe synchronization and co-

ordination behavior of concurrent systems. It possesses a nice combination
of expressiveness and decidability. Although the language of first-order logic

can express events of order in time, it is not intuitive since it explicitly uses
variables to refer to objects. Modal temporal adverbs enable suppressing of

explicit use of first-order variables denoting the time. Natural language sen-
tences about events in time could be more intuitively expressed in a formal

32 Moore’s law describes a long-term trend in the history of computing hardware. See
http://en.wikipedia.org/wiki/Moore’s law.

32

Temporal Logic Model Checkers as Applied in Computer Science

language if the language is enriched with modal adverbs. TL is a formalism

for reasoning about time without introducing time explicitly.
In contrast to first-order representations, modal temporal logic makes

a fundamental distinction between variability over time (as expressed by
modal temporal operators) and variability in a state (as expressed using

propositional or first-order languages). The language of TL also reflects the
temporally indefinite structure of language in a way that is more natural

than the method of using state variables and constants in a first-order logic.
TL has been developed for philosophical reasons and for long was a sub-

ject of philosophy rather than computer science. Nevertheless, Arthur Nor-
man Prior, the founder of this logic, already was aware of practical gains

to be had from this study in the representation of time-delay in computer
circuits (Prior 1996, p. 46). Though there are no serious metaphysical as-

sumptions that time is discrete, he justified the consideration (1967, p. 67):

they are applicable in limited fields of discourse in which we are concerned only
with what happens next in a sequence of discrete states, e.g. in the workings
of a digital computer.

Rescher and Urquhart (1971) also pointed to the application of TL as a tool

in consideration of:

a programmed sequence of states, deterministic or stochastic [. . .].

The restriction to finite-state systems means that model checking procedures
are in principle algorithmic and in practice efficient for many systems of

considerable size.
A broad range of relevant system properties could be expressed in pro-

positional temporal language. Among these, the safety (something bad never
happens, e.g. the program never divides by zero), the liveness (something

good will eventually happen, e.g. the program eventually terminates), reacha-
bility (is it possible to end up in a deadlock state?), fairness (does, under

certain conditions, an event occur repeatedly?), and real-time properties (is
the system acting in time?) properties are most useful when analyzing sys-

tems.
Temporal logics applied in CS include Propositional Dynamic Logic

(PDL), Linear Temporal Logic (LTL), andPropositional LinearTemporal
Logic (PLTL) as its sublogic, CTL, and CTL∗ as its generalization,

Hennessy-Milner logic, and the logic T . Generally, they come in two varie-
ties according to two common views, when describing discrete-state systems:

linear and branching. The Linear-Time (LT) view gives a full behavioral

33

Kazimierz Trzęsicki

description. There is a single time line, and the system can be described by

a trace of the states it can visit along time. If the notion of linear time is as-
sumed, a single path at a time is considered. In the case of Branching-Time

(BT) view the possible paths of the system form a computation tree. In
the case of branching notion of time we can reason about multiple paths at

a time. The difference between linear and branching time approach may be
illustrated by the following systems.

M1 M2

From LT viewpoint there is no difference between M1 and M2. From
the viewpoint of BT there is a difference: in the case of the systemM1 there

is no choice, but in the system M2 different runs are possible.
In LTL, formulas are interpreted over infinite words (Pnueli 1977,

Vardi 1995), while in Branching Temporal Logics (BTL), for example,
CTL, formulas are interpreted over infinite trees (Clarke & E. 1982a). Ac-

cording to linear or branching logic, the algorithms of model checking come
into LTL and CTL model checking, respectively. BTL allows expression

of some useful properties like ‘reset’. CTL, a limited fragment of the more
complete BT logic CTL∗, can be model checked in time linear in the for-

mula size (as well as in the transition system). But formulas are usually
far smaller than system models, so this is not as important as it may first

seem. Some BTL, like µ-calculus and CTL, are well-suited for the kind of
fixed-point computation scheme used in symbolic model checking.

3.1. Time

An important point of the temporal logic formalism is the view of time.
A temporal expression is an expression for its interpretation a temporal

structure is indispensable. Usually, the time is conceived as a set of time
points with earlier-later relation on the set. Formally time T = 〈T,⊳〉
consists of non-empty set T (usually of time points) and a binary relation
⊳ ⊆ T × T . In the case of minimal temporal logic, no property of ⊳ is

assumed. The minimal temporal logic is the common part of different logics

34

Temporal Logic Model Checkers as Applied in Computer Science

that “express” different properties of earlier-later relation. The earlier-later

as intuitively conceived is asymmetric, transitive,33 and infinite in both di-
rection.

An important choice regards the shape of the future. Is the future unique
or do we have different possible futures? By choosing linear time, we answer

saying that future is unique, a linear path with no choice points. This is the
approach taken by LTL (Pnueli 1977). To capture the idea that the future

is open, but the past is determined, we allow branching into the future.
With branching time, the future becomes a tree, adding some uncertainty

to the model. At some points we may have different alternative futures,
each as likely to occur as the other. Examples of BTL are CTL (Clarke

& E. 1982b) and CTL∗ (Clar et al. 1986). In circular time past, present and
future coalesce. This option is useful in the treatment of certain repetitive

processes.
There are several possible structures that one could reasonably imagine

over states in time. TL as applied in CS is based on computational time,
i.e. the time determined by the succession of states of a working ICT sys-

tem. Moments of such a time are identified with states of system that are
determined by values of variables (a set of propositional letters AP –Atomic

Proposition) at a moment.34 Each state is a set of propositions which are
true of that state. States are related by an immediate predecessor-successor

relation. The relation ≤ between states is determined by reflexive and tran-
sitive closing of system of transition,35 hence states are linearly ordered and

the relation ≤ is transitive. Since the set S of states is denumerable, the
order is discrete, i.e. states form a sequence.

The digital computers [. . .] may be classified amongst the ‘discrete state ma-
chines’. These are the machines which move by sudden jumps or clicks from
one quite definite state to another. (Turing 1950, p. 439)

33 Irreflexivity of a relation is a consequence of its asymmetry.
34 A computer operating under a program begins in an initial state with a given input.
Various momentary states of the machine are characterized by the momentary values of
all the variables in the program.
35 By a system of transition we understand a tuple 〈S, { a7−→}a∈A〉, where S is
a non-empty enumerable set of states, A is a non-empty set of actions (transitions, pro-
cesses). With any action a ∈ A a relation of transition a7−→ ⊆ S × S is associated. The
relation of transition is total, i.e., for any state s there is state t such that s is in this
relation with t. In other words: every state has a valid successor and each finite path is
a prefix of some infinite path.

35

Kazimierz Trzęsicki

Discrete time allows us to talk about the next and previous moment in

time.36 The elements of S are being indexed with natural numbers. A com-
putation (run, path) π is thus a sequence of subsets of AP . It is natural for

our purposes to have a bound on the past, for instance for anchored seman-
tics (Manna & Pnueli 1989). Traditionally the time domain is unbounded.

For instance in the case of reactive systems (operational and control sys-
tems) it is reasonable to suppose that the sequence of states does not have an

end. But bounded variations have been studied (Manna & Pnueli 1989), too.
Any run π forms a sequence even though the branching structure of time

is considered, e.g. in the case of concurrent systems any state of the system
may have more than one possible successor state and runs may “branch” in

such states following different successors. Some states are distinguished as
initial. Let I be the set of all initial states.

The discrete option is more common, however the continuous option
has been shown to have interesting applications in the field of real-time

systems. Metric Temporal Logic (MTL) extends TL with real time con-
straints. It was suggested by Chang, Pnueli, and Manna (1994) as a vehicle

for the verification of real time systems. An example of a temporal logic over
a dense domain is MITL (Metric Interval Temporal Logic) (Alur, Feder

& Henzinger 1991).

3.2. Temporal language

Propositional temporal language consists of the language of classical

propositional logic enriched with additional temporal operators.
Philosophical temporal logic provided operators to reason both about

the future and about the past. In the usual applications of temporal logic
to verification the future temporal operators are preferred. Nevertheless,

it has been pointed out that past-tense operators could provide a better
abstraction for the formulation of certain specifications (Lichtenstein, Pnueli

& Zuck 1985, Zuck 1986).
The propositional language consists of AP – an enumerable set of propo-

sitional letters (usually letters p, q, r, and if necessary, with indices are used).
Symbols of classical propositional connectives are: ¬ (negation), ∨ (disjunc-
tion), ∧ (conjunction), ⇒ (implication), ⇔ (equivalence). The symbols are
read as in classical logic. We could have specified a smaller set of Boolean

connectives, as long as they form a functionally complete basis, e.g., ¬, ⇒.

36 This is very usefully in the field of program specification and verification. It should
be stressed that this decision is not motivated by the belief that time itself is discrete.

36

Temporal Logic Model Checkers as Applied in Computer Science

Other symbols may be used as abbreviations: instead of

(φ⇒ ψ) ∧ (ψ ⇒ φ)

we may write
φ⇔ ψ.

The usual conventions concerning omitting superfluous parenthesis are ac-
cepted. The syntactic rules of forming sentences by means of classical con-

nectives are the same as classical propositional logic. Meanings of the con-
nectives are the same as in the classical logic but the definitions differ with

respect to considered semantics.
Temporal logic formulas describe assertions about temporal relation-

ships in state sequences. With respect to past and future, two kinds of
temporal operators are distinguished. Future operators relate assertions on

future states (including possibly the present one) to the reference state.
In the case of past operators, assertions are related to past states (inclu-

ding possibly the present one). To any future temporal operator – if for the
respective property of time the property symmetrical to it holds – a symme-

trical past temporal operator can be defined (by changing the direction of
the relation earlier-later), and conversely – to any past temporal operator

a corresponding future temporal operator may be defined.
Connectives of classical logic are defined “within states”. Temporal ope-

rators are defined by relation “between states” on a path.
In the case of linear temporal logic of computational time, formulas

are evaluated over sequences of “time points”, with N as index set and
the linear order < on N. Temporal logics may be based on non-linear time

models, too. The most popular is the branching time model. The idea of
branching time was considered for philosophical reasons (omniscience and

free will) by A. N. Prior. His solutions were inspired by ideas of Ockham
and Peirce.

Unary operators G (it will always be such that . . .) and H (it has been
always such that . . .) are most basic. The binary operators S (Since) and U

(Until)37 were introduced by Kamp (1968). U and S are expressively com-
plete for Dedekind’s complete flows of time.38 If time is discrete, two unary

37 In temporal logic as applied in computer science, the discussed operators G, H, S
and U are used in slightly different meaning than in philosophical logic. In computer
science for simplicity (Lamport 1983) the reflexive meaning is preferred and often modal
logic instead of typical temporal logic symbols are employed.
38 If U and S are taken in strong and very strict meaning.

37

Kazimierz Trzęsicki

operators © (next) and ⊖ (previous) are definable. In the case of bran-
ching time, the language can be augmented with two unary path-operators:
E and A. In temporal logic as applied in computer science, first of all we

are concerned with future temporal operators.39

Sentences (formulas) of propositional language are denoted with small

Greek letters: φ,ψ, . . ., and if necessary, with indices.
Temporal operators are semantically defined with respect to Kripke

frame. By the Kripke frame we understand a tuple 〈S, I,≤〉, where S is
non-empty set of states, I(⊆ S) – non-empty set of initial states and ≤ the
relation obtained by reflexive and transitive closure of the system of transi-
tion. The structure is also known as a state graph or state transition graph

or transition system.40

Though the semantical definitions of temporal operators could be done

generally without any assumptions concerning the computational time, they
are defined separately for linear and branching times. Let us start with the

language of logic of linear computational time.

3.3. Linear temporal logics

Application of linear temporal logics LTL41 in CS was originated by

Pnueli (1977). Invented by him, the logic DUX was applied to concurrent
systems. This logic has been axiomatize and developed in (Gabbay, Pnu-

eli, Shelah & Stavi 1980) and (Manna & Pnueli 1981). The expressiveness
of the language of LTL has been studied (Thomas 1997, Emerson 1990).

Since the work of Pnueli, a variety of variants and extensions of LTL have
been investigated. Among them, worth mentioning are Lamport’s Tempo-

ral Logic of Actions (TLA) (Lamport 1994), and LTL with past operators
(Gabbay et al. 1980, Lichtenstein et al. 1985, Laroussinie, Markay & Schnoe-

belen 2002).42

In the case of LTL, it is assumed that the computational time is isomor-

phic to the set of natural numbers N, i.e., it is linear, discrete and bounded
in the past. The language with two temporal operators G and© is the most
basic. The operator G is called always and informally read as: henceforth or
always from now on. The next time is denoted by© and informally read as:

39 It has been proved that in the case of initial semantics for any formula there is an
equivalent formula in that no past time operators occur (Gabbay 1981).
40 See (Emerson 1990) for details.
41 The term LTL refers mostly to propositional LTL (PLTL), as opposed to
Quantified Propositional LTL (QPLTL).
42 Adding the past operators does not change the expressiveness of LTL, but can be
helpful for specification convenience and modular reasoning.

38

Temporal Logic Model Checkers as Applied in Computer Science

at the next instant. Formula Gφ is read “always φ” and©φ is read “next φ”.

Let LTL− denote as well this language and its logic.

Definition 1

The set of LTL− of well formed formulas is the smallest set such that

• AP ⊆ LTL−

• ¬φ, (φ ∨ ψ), (φ ∧ ψ), (φ⇒ ψ) ∈ LTL−, if φ, ψ ∈ LTL−

• Gφ, ©φ ∈ LTL−, if φ ∈ LTL−.

Labelling L is a mapping

L:S → 2AP

that labels each state in S with a set of propositional letters (that are
satisfied in that state).

Let π(i) be the set of propositional letters assigned by L to the state si,
si ∈ S; i ∈ N. A run (a path) π is a sequence: π(0), π(1), π(2), In other

words, a path (a run) is based on linearly ordered maximal subset of S. Let
Π be the class of all runs (paths). Let πi be the suffix of sequence π that

starts from π(i). π0 is equal to π. It is supposed that s0 ∈ I.
Kripke model is a 3-tuple 〈S,<,L〉 or more concise π.
The notion of satisfaction |= is defined inductively.

Definition 2

For any i ∈ N:

• π(i) |= φ iff φ ∈ π(i), for φ ∈ AP

• π(i) |= ¬φ iff it is not true that π(i) |= φ

• π(i) |= φ ∨ ψ iff π(i) |= φ or π(i) |= ψ

• π(i) |= φ ∧ ψ iff π(i) |= φ and π(i) |= ψ

• π(i) |= φ⇒ ψ iff not π(i) |= φ or π(i) |= ψ

• π(i) |= Gφ iff for all j, i ≤ j:π(j) |= φ

• π(i) |= ©φ iff π(i+ 1) |= φ.

πj(i) |= φ will mean: π(j + i) |= φ. In particular π(i) |= φ means:

π0(i) |= φ.
The operator G is taken in reflexive meaning.43 Gφ informally means:

φ holds in all forthcoming states including the present one.

43 It is typical in writings devoted to applications of TL in CS. The practice started
with (Gabbay et al. 1980).

39

Kazimierz Trzęsicki

The operator F is dual to the operator G, i.e. Fφ means the same as

¬G¬φ or Gφ means the same as ¬F¬φ. The operator F may be defined
semantically as follows:

• π(i) |= Fφ iff exists j, i ≤ j:π(j) |= φ.

F is called sometime or eventuality and the formula Fφ informally is

read as: sometime φ, now or in the future φ or eventually from now on.
The language LTL− enriched with a temporal operator U is denoted

LTL. In the clauses for LTL− instead of LTL− we write LTL and a new
clause is added:

• if φ,ψ ∈ LTL, then (φUψ) ∈ LTL.

The operator U is called until.44 The formula φUψ is read: φ until ψ.

φUψ can be understand as follows: there is a subsequent state (possibly
the present one) in which ψ holds, and φ holds until that state.

Such a meaning of U is defined as follows:

• π(i) |= φUψ iff exists j, i ≤ j:π(j) |= ψ and for all k, i ≤ k < j:
π(k) |= φ.

It can be observed that the word until may be used in various meanings.

First of all, strong and weak meanings may be discerned. The difference is
based on the existence of the point in that the second argument is satisfied.

In the case of weak meaning, conversely to the strong one (as in above
definition), the existence of this point is omitted. The operator W renders

the weak meaning of the word until.

• π(i) |= φWψ iff exists j, i ≤ j:π(j) |= ψ and for all k, i ≤ k < j:
π(k) |= φ or for all j, i ≤ j:π(j) |= φ.

φWψ is read: φ is waiting for ψ or φ unless ψ.

The operators U and W are taken in the reflexive meaning. Two other
types of meanings may be pointed out. In definitions of U and W there are

two possibilities of changing of ≤ for <. Besides the reflexive meaning, the
strict Us and W s (in the formal definitions of U and W the first occurrence

of ≤ is replaced by <) and very strict Uvs and W vs (all the occurrences of
≤ are replaced by <) meanings are distinguished.45

• π(i) |= φUsψ iff exists j, i < j:π(j) |= ψ and for all k, i ≤ k < j:
π(k) |= φ

44 The operator was originally investigated by Kamp (1968) and introduced into the
context of program analysis in (Gabbay et al. 1980).
45 The strong and very strict notion of “until” is preferred in philosophical logic.

40

Temporal Logic Model Checkers as Applied in Computer Science

• π(i) |= φW sψ iff exists j, i < j:π(j) |= ψ and for all k, i ≤ k < j:

π(k) |= φ or for all j, i ≤ j:π(j) |= φ

• π(i) |= φUvsψ iff exists j, i < j:π(j) |= ψ and for all k, i < k < j:

π(k) |= φ

• π(i) |= φW vsψ iff exists j, i < j:π(j) |= ψ and for all k, i < k < j:

π(k) |= φ or for all j, i < j:π(j) |= φ.

It could be proved that all the other future temporal operators of LTL

can be defined by means of U and ©.
Figuratively speaking, states do not have a past. For the present state,

if it is not initial, there are past states, but the future in no way is affect
by the past states. It depends only on the present state. This fact does

not cancel the possibility of usefulness of a language with past temporal
operators (Lichtenstein et al. 1985). Moreover, such languages are not more

complex (Sistla & Clarke 1985).
LTL is typically presented with temporal operators meant to express

the truth values of formulas in the future. This need not to be the case,
it is indeed possible to introduce temporal operators regarding the past,

or ever consider a logic with only past temporal operators. Though adding
past-tense operators to the future fragment of LTL does not increase its

expressive power,46 the past-tense operators allow to express some intere-
sting properties in a more natural manner (Lichtenstein et al. 1985). It has

been argued that past temporal operators can be particularly useful in spe-
cifying the intended behavior of certain systems (Lichtenstein et al. 1985,

Zuck 1986).
It has been shown that LTL, both with past-tense or future-tense

operators, cannot express certain properties which involve counting (Wol-
per 1983). To overcome these shortcomings, the introduction of special

grammar operators has been suggested (Wolper 1983) or the addition of
counting operators as done in the ATG Temporal Rover (Drusinsky 2000).

The problem is solved in µ-calculus (Goranko 2000, p. 67).
The language LTLP is the LTL language extended by past time opera-

tors.⊖ (weak previous operator) is an unary operator such that⊖φ means:
φ held in the previous state. H (has-always-been operator) is the operator

symmetrical to G. Gφ means: φ held in all past states (including the present
one). S is a two-argument operator and φSψ is read: φ since ψ. Both the

operators ⊖ and S suffice to define all the other past temporal operators
of LTLP .

46 This is however misleading in a certain sense.

41

Kazimierz Trzęsicki

• π(i) |= ⊖φ iff π(i− 1) |= φ, if i > 0

• π(i) |= Hφ iff for any j, j ≤ i:π(j) |= φ

• π(i) |= φSψ iff exists j, j ≤ i:π(j) |= ψ and for all k, j < k ≤ i:

π(k) |= φ.

In the case of since, similar consideration concerning its meaning may be
repeated, as in the case of until: there are strong and weak, and for both

the reflexive, stricte and very stricte meanings.
© and ⊖ are symmetrical one to another. The same is true about U

and S (and other respective variants of until and since), G nad H. The
symmetry does not result in mirror image rule even for the law of linear

logic, because of asymmetry of past and future. The computational linear
and branching time has a beginning but does not have an end. Past is limited

by the initial state but it is supposed that there are infinitely many future
states.
The alphabet of TLTP is augmented by symbols⊖,H, S. The language

LTLP is defined by adding to the clauses of the definition of the language
LTL (in the clauses LTL is changed for LTLP) the following clauses:

• if φ ∈ LTLP , then ⊖φ ∈ LTLP

• if φ ∈ LTLP , then Hφ ∈ LTLP

• if φ,ψ ∈ LTLP , then φSψ ∈ LTLP .

The operator P (once) as counterpart of F may be defined as abbrevia-
tion for ¬H¬.

In TL, the satisfiability and validity could be defined in different ways.

There are two view points: classical or floating viewpoint and initial or an-
chored (Emerson 1990, Lichtenstein & Pnueli 2000). Thus, two semantics

are distinguished: normal and initial (Szałas 1995, p. 2). Initial semantics
is typical and usual in the case of software development (Manna & A. Pnu-

eli 1992, 1995a). Both versions do not differ in the set of valid formulas.
They differ, however, when one considers properties of temporal theories.

Let us start with classical notions. In any of the discussed languages
the definitions of satisfiability and validity have the following schemata.

Definition 3

• A formula φ is satisfiable (valid) in π, π |= φ, iff for any i, 0 ≤ i:π(i) |= φ

• a formula φ follows from a set Σ of formulas, Σ |= φ, iff for any π(∈ Π):

if π |= Σ, then π |= φ

• φ is (universally) valid, |= φ, if and only if ∅ |= φ.

42

Temporal Logic Model Checkers as Applied in Computer Science

π(i) |= Σ means: for any φ ∈ Σ:π(i) |= φ.

π |= Σ means: for any φ ∈ Σ:π |= φ.
πi |= φ will mean: for all j, i ≤ j:π(j) |= φ. In particular, π |= φ means:

π0 |= φ.
The anchored viewpoint is rendered in the following definitions.

Definition 4

• φ is initially satisfiable (valid) in π, π |=0 φ, iff π(0) |= φ

• φ initially follows from a set Σ, Σ |=0 φ, iff for any π(∈ Π): if π |=0 Σ,
then π |=0 φ

• φ (universally) initially valid, |=0 φ, if and only if ∅ |=0 φ.

Linear temporal logic equipped with the initial validity semantics will
be denoted by LTL−

0 , LTL0, LTLP0.

πi |=0 φ will mean: π(i) |=0 φ or π(i) |= φ. In particular π |=0 φ means:
π(0) |=0 φ or π(0) |= φ.

Validity and satisfiability are “dual” in the following sense: φ is valid
iff ¬φ is not satisfiable.
The following theorems are consequences of the above definitions.

Theorem 1

If Σ |= φ and Σ |= φ⇒ ψ, then Σ |= ψ.

Proof. Let Σ |= φ ⇒ ψ and Σ |= φ and not Σ |= ψ. Hence for some π:
π |= Σ and for some i:π(i) 6|= ψ. From the supposition π(i) |= φ. Thus not

π(i) |= φ ⇒ ψ. Therefore Σ 6|= φ ⇒ ψ. This is in contradiction with the
assumption. �

Theorem 2

If Σ |= φ, then

• Σ |= Gφ

• Σ |= ©φ.

Proof. Let us prove only the second fact. Let us suppose that Σ |= ©φ is
not valid. Thus for some π:π |= Σ and for some i:π(i) 6|= ©φ. By definition

of © we have that π(i + 1) 6|= φ. This fact is in contradiction with the
assumption that Σ |= φ. �

43

Kazimierz Trzęsicki

Let us consider some connections between LTL and LTL0.

Lemma 3

• If π |= φ, then π |=0 φ

• π |= φ iff π |=0 Gφ.

Proof. From the definition π |= φ means that for any i, 0 ≤ i:π(i) |= φ. In
particular thus π(0) |= φ. Hence π |=0 φ.

From the definition of |= for any i, 0 ≤ i:π(i) |= φ. This thus means
that π(0) |= Gφ. By the definition of |=0 this is equivalent to π |=0 Gφ. �

Let GΣ = {Gφ:φ ∈ Σ}.

Theorem 4

• If Σ |=0 φ, then Σ |= φ

• Σ |= φ iff GΣ |=0 φ.

Proof. Let Σ |=0 φ and for some π:π |= Σ. Hence for all i, 0 ≤ i:π(i) |=0 φ.

Thus for all i, 0 ≤ i:π(i) |= φ. From it follows π |= φ and finally, because
of arbitrariness of π, Σ |= φ.

Let Σ |= φ. Thus by definition for any π: if π |= Σ, then π |= φ.
Let for some π:π |= Σ. Let ψ ∈ Σ, thus π |= ψ. It means that for all i,

0 ≤ i:π(i) |= ψ. Hence for all i:ψ(i) |=0 ψ. Thus π |=0 Gψ. From π |= φ
follows that π |=0 φ. For arbitrariness of π and ψ we obtain GΣ |=0 φ.

Let Σ 6|= φ. Thus for some π:π |= Σ and for some i:π(i) 6|= φ. Hence for
any ψ, ψ ∈ Σ:π |= ψ. From it follows that for any i, 0 ≤ i:π(i) |= ψ. By

definition of |=0 and G we obtain that π |=0 Gψ. For some i:πi 6|= φ since
for some i:π(i) 6|= φ. Hence πi 6|=0 φ. Thus GΣ 6|=0 φ. �

In LTL the relationship between implication and semantical consequ-
ence (the semantical counterpart of deduction theorem) is stated in the

following theorem.

Theorem 5

Σ ∪ {φ} |= ψ iff Σ |= Gφ⇒ ψ.

Proof. Let us suppose that for some π: π |= Σ, π 6|= Gφ ⇒ ψ. Thus for

some i:π(i) 6|= Gφ⇒ ψ. Hence π(i) |= Gφ and π(i) 6|= ψ. From π(i) |= Gφ it
follows that πi |= φ. Next we have that πi |= Σ∪{φ}.We get a contradiction
with Σ ∪ {φ} |= ψ, because πi(0) 6|= ψ.

44

Temporal Logic Model Checkers as Applied in Computer Science

Let now for some π:π |= Σ ∪ {φ} and for some i:π(i) 6|= ψ. In consequ-

ence we have π |= φ. In particular thus for any j, i ≤ j:π(j) |= φ. Hence
πi(0) |= Gφ. From π |= Σ it follows that πi |= Σ. We get a contradiction,

because πi(0) 6|= ψ. �

In the case of initial semantics the semantical counterpart of deduction

theorem is formulated as in classical propositional logic.

Theorem 6

Σ ∪ {φ} |=0 ψ iff Σ |=0 φ⇒ ψ.

Proof. Let Σ |=0 φ ⇒ ψ does not hold. Thus for some π:π |=0 Σ and

π 6|=0 φ ⇒ ψ. Hence π |=0 φ and π 6|=0 ψ. By definition of initial semantics
we have that π(0) |= φ and π(0) 6|= ψ. Then π(0) |= Σ ∪ {φ} and therefore
Σ ∪ {φ} 6|=0 ψ.
Let now Σ∪ {φ} 6|=0 ψ. Thus for some π:π |=0 Σ∪{φ} and π 6|=0 ψ. By

definition of initial semantics, then π(0) |= Σ∪{φ} and π(0) 6|= ψ. Therefore
π(0) |= Σ and π(0) 6|= φ⇒ ψ. Hence Σ{φ} 6|=0 ψ. �

Despite all the differences between LTL and LTL0 it is remarkable that

in both cases LTL and LTL0 universally valid are the same formulas.

Theorem 7

|= φ iff |=0 φ.

From the angle of initial semantics, the languages LTL and LTLP have

the same expressibility (Gabbay et al. 1980, Gabbay 1989). It means that
for any formula φ of the language LTLP there is a formula ψ of the LTL

such that both the formulas are initially equivalent.
With the help of the language of LTL the property of fairness and

some other correctness properties could be expressed. As an example, let us
consider 2-processes-resource-manager.

Let regi and ownsi be propositional letters.
• regi is true iff the i-process is requested the resource.

• ownsi is true exactly then the i-process owns the resource.
The safety property is expressed by:

G¬(owns1 ∧ owns2)

– it is excluded that both the processes at the same time own the resource.

The liveness property is expressed by:

G(req1 ⇒ Fowns1)

45

Kazimierz Trzęsicki

– if the 1-process is requested the resource, then the process eventually will

own it.
The strong fairness is expressed by:

GF (req1 ∧ ¬(owns1 ∨ owns2)) ⇒ GFowns1

– if endless often the free resource is requested, then endless often the reso-

urce will be own.
The priority:

G(req1 ∧ req2 ⇒ (¬owns2W (owns2W (¬owns2Wowns1))))

– if both the processes compete, the 2-process will win (has the priority)

There is a strong connection between TL models and automata (Go-
ranko 2000, p. 55–62). A proposition of TL is satisfied if the language accep-

ted by a proper automaton is not empty. Automata checking non-emptiness
are constructive, i.e. automaton produces the model if the proposition is

satisfied. This fact is important for the theory of automata and for fruit-
fulness of application of TL in CS (Vardi & Wolper 1986b, Thomas 1990,

Wolper 1995).

3.4. Temporal logics of branching time

Lamport was the first to investigate the expressive power of various TLs

(Clarke 2008, p. 11). Already in 1980, he remarked that languages of BTLs
and LTLs differ in expressivity. Lamport (1980) discussed two logics: a sim-

ple linear-time logic and a simple branching-time logic. Emerson and Hal-
pern (1983, 1986) fixed these problems.BTLs cannot express certain natural

fairness properties that can be easily expressed in the LTLs. The language
of LTLs cannot express the possibility of an event occurring at sometime

in the future along with some computation path.
The development of BTLs for specification and verification of ICT sys-

tems began in eighties of the last century (Pnueli 1985b, Clarke et al. 1986,
Emerson & Halpern 1986). Semantics of these languages gives more in-

formation (Glabbeek 2001). Various branching temporal logics have been
proposed.

As in the case of linear temporal logics, our discussion will be restricted
to propositional logics.

The operators of the language of BTL Basic Branching Time Temporal
Logic [or UB – Unified System of Branching Time, (Ben-Ari et al. 1981)]

combine the expressibility of the existence of branches in the state structure

46

Temporal Logic Model Checkers as Applied in Computer Science

with the possibility of speaking about states on the branches. This is enabled

by path modalities:

E© φ – there is a successor state (starting from the present state) in which
φ holds,

EGφ – there is a branch (starting from the present state) on which φ
holds in all subsequent states,

EFφ – there is a branch (starting from the present state) on which φ
holds in some subsequent state,

A© φ – φ holds in all successor states (starting from the present state),

AGφ – φ holds on all branches (starting from the present state) in all

subsequent states,

AFφ – on all branches (starting from the present state), φ holds in some
subsequent state.

The language of BTL is obtained by extension of LTL− by the above
modalities.

These modalities are integral, i.e. the paths operators can only be used
before ©, G, F . E.g., E¬© φ is not a formula.

Let Π(i) denote all the paths such that the state π(i) is their element,
i.e. π1 ∈ Π(π(i)) if and only if π1(i) = π(i). Because of the linearity in the

past for any path of Π(π(i)) the number of former states is the same. In
other words, members of Π(π(i)) are paths with the same common initial

sequence: π0, . . . , πi. They may differ in the case of (i+ 1)-members.
To define the notion of satisfaction in BTL the following clauses are

added to the clauses of LTL−:

Definition 5 (Satisfiability)

• π(i) |= E© φ iff exists π1 ∈ Π(π(i)):π1(i+ 1) |= φ,

• π(i) |= A© φ iff for all π1 ∈ Π(π(i)):π1(i+ 1) |= φ,

• π(i) |= EGφ iff exists π1 ∈ Π(π(i)) and for all j, j ∈ N:π1(i+ j) |= φ,

• π(i) |= AGφ iff for all π1 ∈ Π(π(i)) and for all j, j ∈ N:π1(i+ j) |= φ,

• π(i) |= EFφ iff exists π1 ∈ Π(π(i)) and there is j, j ∈ N:π1(i+ j) |= φ,

• π(i) |= AFφ iff for all π1 ∈ Π(π(i)) there is j, j ∈ N:π1(i+ j) |= φ.

The notions of satisfiability, consequence and validity are formulated as

in the case of LTL.

47

Kazimierz Trzęsicki

The path modalities are dual in the following sense:

• |= A© φ⇔ ¬E©¬φ,

• |= AGφ⇔ ¬EF¬φ,

• |= AFφ⇔ ¬EG¬φ.

Let us remark that EFφ means that φ is possible in some future (along
some future, φ eventually holds and is thus possible). The inevitability of

φ is expressed by AFφ (along all futures, φ eventually holds and is thus
inevitable) (Ben-Ari, Manna & Pnueli 1983).

Extension of the language BTL by binary operator U yields the langu-
age CTL (Clarke & E. 1982b, Queille & Sifakis 1982).

In BTL, as well as in CTL, the path quantifiers A and E are used only
as an “attachment” to temporal operators. They are used as “standalone”

in the language CTL∗, where the path quantifiers A and E are used to
denote for all paths and for some path, respectively.

There are two kinds of formulas of the language of CTL∗: p-formulas
(path formulas) and s-formulas (state formulas).

Definition 6

The language of CTL∗ is the smallest set of formulas that satisfies the
following conditions:

• φ is a s-formula, if φ ∈ AP ;

• if φ and ψ are s-formulas, then so are ¬φ, φ ∨ ψ, φ ∧ ψ, φ⇒ ψ;

• if φ is a p-formula, then Aφ and Eφ are s-formulas;

• any s-formula is also a p-formula;

• if φ and ψ are p-formulas, then so are ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ ⇒ ψ),
©φ, (φUψ), Gφ, Fφ.

The formulas of CTL47 are formulas of CTL∗ in that the temporal ope-
rators ©, U, F and G are immediately preceded by a path quantifier. The

language of branching time may also be extended be adding past temporal
operators.

Two notions of satisfiability have to be defined. In any case the symbol
|= will be used, however the meaning of |= will depend on the connective
or operator taken into account. In the case of s-formulas, satisfiability will
be defined for states but in the case of p-formulas it will be done for paths.

47 The language CTL was conceived earlier than CTL∗.

48

Temporal Logic Model Checkers as Applied in Computer Science

The operator © and temporal operators, in particular U are operating on
path. The next or the future state is on a path. In other words, there is no
next or future state independently on the path. To define a next or a future

state we have to point a path on that the state is next or future.

Definition 7 (satisfiability in a state)

For any π ∈ Π, any i ∈ N:

• π(i) |= φ iff φ ∈ π(i), if φ ∈ AP ;

• π(i) |= ¬φ iff not π(i) |= φ;

• π(i) |= φ ∨ ψ iff π(i) |= φ or π(i) |= ψ;

• π(i) |= φ ∧ ψ iff π(i) |= φ and π(i) |= ψ;

• π(i) |= φ⇒ ψ iff if π(i) |= φ, then π(i) |= ψ;

• π(i) |= Eφ iff ∃π1 ∈ Π(π(i)):πi
1 |= φ;

• π(i) |= Aφ iff ∀π1 ∈ Π(π(i)):πi
1 |= φ.

Let us remark that though π(i) and π1(i) are equal for any π, π1 ∈ Π,
in the last two clauses the indication of a path could not be omitted if in φ

operators occur for that the satisfiability is defined on a path.
All the future temporal operators that are definable in CTL∗ are de-

finable by means of © and U . Thus it is enough to define the notion of
satisfiability for both these operators.

Definition 8 (satisfiability on a path)

• πi |= ©φ iff πi+1 |= φ;

• πi |= φUψ iff exists j, j ≥ i: (πj |= ψ and for any k, i ≤ k < j:πk |= φ).

The notions of satisfiability (validity), consequence and (universal) va-
lidity as defined in the same way as for earlier logics.

It can be seen that all valid formulas of BTL are valid formulas of CTL
and these are valid formulas of CTL∗. The conversely does not hold.

Some semantical facts are worth to mention.

• |= EFφ⇔ E⊤Uφ.

• |= EφWψ ⇔ EφUψ ∨EGφ.

• |= AφWψ ⇔ ¬E(¬ψ)U(¬φ ∧ ¬ψ).

• |= AφUψ ⇔ AφWψ ∧AFφ.

By means of EU, AF, E© all the other modalities can be defined
(Laroussinie 1995).

49

Kazimierz Trzęsicki

CTL∗ is more expressive than CTL, but is more computationally com-

plex. CTL is decidable in exponential time. CTL∗ is decidable in double
exponential time. The lower bound was described by Vardi and Stock-

meyer (1985), the upper bound was estimated by Emerson and Jutla
(1988, 1999).

The logic CTL∗P has been defined by Laroussinie and Schnoebelen
(1994) as a complete logic of computational trees with linear past temporal

operators. This logic has been investigated in (Zanardo & Carmo 1993, Kup-
ferman & Pnueli 1995, Laroussinie & Schnoebelen 2000). CTL∗P is more

useful than CTL∗. The axiomatization of this logic is not so complicated as
axiomatization of CTL∗.

The language of CTL∗P is obtained by adding past temporal opera-
tors ⊖ and S to the alphabet of CTL∗. The formation rules regarding the

operators ⊖ and S are analogical to the rules for © and U , respectively.
To the notion of satisfiability for CTL∗ the following clauses are added:

Definition 9

• πi |= ⊖φ iff πi−1 |= φ, if i > 0,

• πi |= φSψ iff exists j, j ≤ i: (πj |= ψ and for any k, j ≤ k < i:πk |= φ).

In principle structures with time linear in the past are considered,
i.e., structures typical for Ockham logic [in Prior sense (Prior 1967, Bur-

gess 1984)]. It does not mean that logic of time branching in the past are
not taken into account (Reisig 1989, Kaminski 1994, Kupferman & Pnu-

eli 1995). CTL∗P has been axiomatized and the completeness has been
proved by Reynolds (2005).

The branching time logics BTL, CTL and CTL∗ can be extended or
modified in various ways.48

The languages of linear and branching temporal logics differ in expressi-
veness (Emerson 1996). Some proprieties are expressible in the language of

linear time and not expressible in the language of branching temporal lan-
guage, and conversely. LTL and CTL are of incomparable expressive power,

while CTL∗ is strictly more expressive than either of the others. Elimina-
ting the existential path quantifier from CTL and CTL∗ does not affect

the relative expressive power of the logics. ACTL∗ trivially encompasses
LTL and ACTL. On the one hand, the formula AFAGp is a formula of
ACTL that does not have an equivalent LTL formula. On the other hand,

there is no ACTL formula that is equivalent to LTL formula AFGp. Thus,

48 For more see e.g. (Kroger & Merz 2008, p. 368–373).

50

Temporal Logic Model Checkers as Applied in Computer Science

LTL and ACTL are incomparable, and both are strictly less expressive

than ACTL∗.
Languages of branching TLs, in particular CTL and its variants are

most widely used in connection with verification. The languages CTL and
CTL∗ suffice to express many important proprieties (Emerson & Hal-

pern 1983). CTL has the flexibility and expressiveness to capture many
important correctness properties. In addition, the CTL model checking al-

gorithm is of reasonable efficiency, polynomial in the structure and specifi-
cation sizes.

Linear TLs and branching TLs differ in the methods of model checking
though common methods are developed (Vardi 1989, Kupferman, Vardi

& Wolper 2000). In some cases the complexity of methods of linear TLs
is greater than branching TLs, and conversely. CTL∗ (Emerson & Hal-

pern 1986) provides a uniform framework that subsumes both LTL and
CTL, but at the higher cost of deciding satisfiability.

Some of TLs in increasing expressive power are: Hennessy-Milner lo-
gic HML (Hennessy & Milner 1985), Unified System of Branching-Time

Logic (Ben-Ari et al. 1981, Ben-Ari et al. 1983), Computation Tree Lo-
gic CTL (Clarke & E. 1982a), Extended Computation Tree Logic CTL∗

(Clarke & E. 1982a), and modal µ-calculus (Kozen 1982, Kozen 1983).
There has been an ongoing debate as to whether linear TL or bran-

ching TL is better for program reasoning (Lamport 1980, Emerson & Hal-
pern 1983, Vardi 2001).

3.5. The µ-calculus

The µ-calculus may be viewed as a particular but very general temporal
logic. Some formulations go back to the work of de Bakker and Scott (1969).

It can be introduced as an extension of the temporal logic for transition sys-
tems with operators for a least fixpoint µ and a greatest fixpoint ν (Emerson

& Clarke 1980, Pratt 1981, Kozen 1983). The µ-calculus provides operators
for defining correctness properties using recursive definitions plus least fix-

point and greatest fixpoint operators. Many µ-calculus characterizations of
correctness properties are elegant due to its simple underlying mathema-

tical organization. It turns out to be an extremely powerful formalism for
specification and verification of temporal properties.

The idea of model checking instead of testing satisfiability was intro-
duced in (Emerson & Lei 1986). µ-calculus subsumes most temporal lo-

gics, including LTL, CTL and more powerful logics such as CTL∗, i.e., in
µ-calculus most of the known temporal logics can be translated (Dam 1994,

Emerson 1990, Goranko 2000).

51

Kazimierz Trzęsicki

The µ-calculus is a rich and powerful formalism; its formulas are really

representations of alternating finite state automata on infinite trees (Emer-
son & Jutla 1991). The µ-calculus is very expressive and very flexible. Model

checking is essentially a problem of fixedpoint computation.
The power of the µ-calculus comes from its fixpoint operators. Least

fixpoints correspond to well-founded or terminating recursion, and are used
to capture liveness or progress properties asserting that something does

happen. Greatest fixpoints permit infinite recursion. They can be used to
capture safety or invariance properties.

Definition 10

An operator τ : 2S → 2S is monotonic, if X1 ⊆ X2 implies τ(X1) ⊆
τ(X2), where X1,X2 ⊆ S.

Definition 11

A set X ⊆ S is a

• fixpoint of τ , if τ(X) = X;

• pre-fixpoint of τ , if τ(X) ⊆ X;

• post-fixpoint of τ , if τ(X) ⊇ X;

• least fixpoint, µτ , if X is a fixpoint (pre-fixpoint) and for every fixpoint
(pre-fixpoint) Y,X ⊆ Y .

• greatest fixpoint, ντ , if X is a fixpoint (post-fixpoint) and for every
fixpoint (post-fixpoint) Y,X ⊇ Y .

Let us remark that if τ have a least µτ or greatest ντ fixpoints, they
are unique.

Theorem 8 (Knaster-Tarski Theorem)
Let τ : 2S → 2S be a monotone operator.

1. µτ =
⋂
{X ⊆ S: τ(X) = X} =

⋂
{X ⊆ S: τ(X) ⊆ X};

2. ντ =
⋃
{X ⊆ S: τ(X) = X} =

⋃
{X ⊆ S: τ(X) ⊇ S};

3. µτ =
⋃

α≤|S| τ
α(∅);

4. ντ =
⋂

α≤|S| τα(S).

Definition 12

Let |S| be the cardinality of S. Let α be an ordinal taking all values
not greater than |S|.

τα is defined as follows:

• τ0(X) = X, τβ+1(X) = τ(τβ(X)), and

52

Temporal Logic Model Checkers as Applied in Computer Science

• τγ(X) =
⋃

β<γ τ
β(X) for limit ordinals γ.

The meaning of τα is defined as follows:

• τ0(X) = X, τβ+1(X) = τ(τβ(X)), and

• τγ(X) =
⋂

β<γ τβ(X) for limit ordinals γ.

ModelsM for µ-calculus are labeled transition systems 〈S,R,L〉, where
S is non-empty set (of states) and R(⊆ S × S) is such that (s, s1) ∈ R
means that s1 is an immediate successor of s, L is labelling function. For

given L with every formula φ its extensional ‖φ‖ can be associated, i.e.
the set of states where φ is true. If p is an atomic proposition occurring in

φ, then φ can be regarded as an operator λp.φ(p) : 2S → 2S , defined by
λp.φ(p)(‖p‖) = ‖φ‖.

Definition 13

A formula φ is positive in the propositional variable z iff every occur-
rence of z in φ is positive, i.e. in the scope of even number of negations.

Theorem 9

If φ is positive in z, then λz.φ(z) is monotone.

By the theorem 9 with every formula φ(z) monotone in z formulas

expressing the least fixpoint µz.φ(z) and the greatest fixpoint νz.φ(z) of
the λz.φ(z) can be associated.

The basic language of µ-calculus extends the language of propositional
calculus with a countable set of propositional variables PV = {z0, z1, . . .}
(AP ∩ PV = ∅), operator © and operator of the least fixpoint µ. ©φ is
true at s means that φ is true at all s1 such that (s, s1) ∈ R.

Each fixpoint formula such as µz.φ should be positive in the proposi-
tional variable z meaning z occurs under an even number of negations

The greatest fixpoint operator ν is dual to µ and could be defined:

νz.φ ::= ¬µz.¬φ[¬z/z].

Let us remark that the formula νz.φ is allowed only if propositional variable
z occurs positively in φ.

A propositional variable z is bound in a formula φ if it occurs in µz.ψ,
a subformula of φ. An occurrence of a variable is free, if it is not bound.

A formula is a sentence if no variable is free in it.
Each (closed) formula φ may be identified with the set ‖φ‖ of states

of S where it is true. False corresponds to the empty set, true corresponds

53

Kazimierz Trzęsicki

to S. Implication φ ⇒ ψ corresponds to simple set-theoretic containment

‖φ‖ ⊆ ‖ψ‖.
‖φ‖V , the extensional of a formula φ relative to the valuation V :PV →

2S , is defined inductively:

• ‖φ‖V = {s:φ ∈ L(s)} for φ ∈ AP ;

• ‖¬φ‖V = S \ ‖φ‖V ;

• ‖φ⇒ ψ‖V = (S \ ‖φ‖V) ∪ ‖ψ‖V ;

• ‖Xφ‖V = {s:R(s) ⊆ ‖φ‖V };

• ‖µz.φ‖V =
⋂
{X ⊆ S: ‖φ‖V [z::=X] ⊆ X},

where V [z ::= X] is the valuation obtained from V be redefining to take
a value X at z.

The basic semantic notion of µ-calculus is truth of a formula at a state

of a model M relative to valuation V :

M, V, s |= φ.

Note the following facts (Goranko 2000, p. 65):

• the truth definition coincides with the usual one for the formulas with
no propositional variables and µ-operators;

• ‖φ‖V , the extensional of a formula φ, hence its truth in a model, only
depends on the valuation of the free occurrences of propositional varia-

bles. In particular, the extensional of a sentence does not depend on the
valuation.
The language LTL is definable in the µ-calculus, i.e. LTL can be regar-

ded as a fragment of µ-calculus. To embed CTL in µ-calculus as a primitive
is taken A©. CTL∗ is also embeddable, but the translation is far more

complicated (Emerson & Lei 1986a, Dam 1994a, Goranko 2000, p. 69).
The µ-calculus has been axiomatized by Kozen (1983).

Axiom 1

φ(µz.φ(z)) ⇒ µz.φ(z)

Park’s rule:
φ(θ/z) ⇒ θ

µz.φ(z) ⇒ θ
.

The rule says that µz.φ(z) is a least pre-fixpoint.

The completeness was proved by Walukiewicz (1995, 1996).

54

Temporal Logic Model Checkers as Applied in Computer Science

4. Methods of model checking

The fundamental accomplishment of model checking is enabling broad

scale formal verification (Emerson 2008, p. 40). Model checking is a widely
used formal method of determining whether or not a given model satisfies

properties, and for producing counterexamples if the model does not sa-
tisfy properties. Properties are given in some form of temporal logic, either

LTL or CTL and CTL∗. The properties are expressed by modeling langu-
ages, including (pseudo) programming languages such as Promela (Holz-

mann 2003) or Smv (McMillan 1993), Petri nets (Girault & Valk 2003) or
Lotos (Bolognesi & Brinksma 1987).

Model checker is an algorithm to perform verification tasks which explo-
its various optimization strategies to find a counterexample for violated

specifications. Fixed point algorithms traverse state space of systems and
compute set of states related to the property.

The model checking problem can be stated as follows:

Given a model M and a logic formula φ, determine the set of (initial)

states of M that satisfy φ.

Generally, we say that the modelM satisfies the specification φ if all of the

(initial) states of M satisfy φ.
Emerson about his idea of model checking writes (2008, p. 9):

. . . given any finitemodelM and CTL specification f one can algorithmically
check that M is a genuine model of f by evaluating (verifying) the basic
temporal modalities over M based on the Tarski-Knaster theorem. This was
the second key ingredient of model checking. Composite temporal formulae
comprised of nested subformulae and boolean combinations of subformulae
could be verified by recursive descent. Thus, fixpoint characterizations, the
Tarski-Knaster theorem, and recursion yielded model checking.

It is worth to mention that software is usually more difficult to verify

than hardware. It typically has less regular organization. It may involve
significant use of recursion, and complex, dynamic data structures on the

heap. It can also be extremely large.
Model checking is one of the most powerful “test acceleration technolo-

gies” that has been invented. To improve and extend the practical applica-
bility of model checking method many advanced techniques are elaborated.

Decision procedures, program analysis and type systems, and a shift of focus
to partial specifications common to several systems (e.g. memory safety and

race freedom) have resulted in several practical verification methods. Seve-

55

Kazimierz Trzęsicki

ral interesting methodologies have been explored to avoid the state space

explosion problem.
A brief survey of approaches to circumvent the state-explosion problem

will be presented below.

4.1. Binary decision diagrams

In the early nineties of the last century it was observed (Bryant 1986)

that finite sets can be efficiently represented by means of BDDs (Binary
Decision Diagrams). BDDs are a canonical normal form for propositional

logic formulas. Any boolean formula may be represented as a BDD. Any
assignment of truth values to the propositional letters of the formula cor-

responds to a path down the tree from the root node to a terminal node,
which is labeled either true or false. The value of this label determines the

value of the formula for this assignment of propositional letters.
Bryant popularized BDDs and developed a set of efficient algorithms

for manipulating the data structure introduced in the work of (Lee 1959,
Akers 1978) by placing ordering on them. An Ordered Binary Decision

Diagram OBDD (ROBDD often called BDD for short) is a BDD which
has a total ordering applied to the variables labeling the vertices of the dia-

gram. The size of the OBDD can vary greatly, depending on the ordering
used. Heuristics have been developed to find efficient orderings for a gi-

ven formula (when such an ordering exists). However, finding the optimal
ordering is NP -complete (Bollig & Wegener 1996).

The use of BDDs was made popular by the work of Ken McMil-
lan (1993).

BDDs are data structures used for symbolic representation of the pro-
gram’s states and state transitions. BDD is obtained from a binary decision

tree by merging isomorphic subtrees and identical terminals. Any set of sta-
tes can be encoded as a BDD. If S is a set of states encoded as a set of

Boolean tuples (on a set X), then for any fixed ordering of the elements
of X, there is a unique BDD representing S (Bryant 1992). A BDD is

essentially an acyclic deterministic finite state automaton.
The development of BDDs was a cornerstone for symbolic model check-

ing procedures based on fixpoint computations (Coudert, Berthet & Ma-
dre 1990).49 The method was developed in (Burch, Clarke, McMillan, Dill

& Hwang 1990, Burch, Clarke, McMillan, Dill & Hwang 1992, McMil-
lan 1993).

49 See (Clarke et al. 1999, Schneider 2003) for more details.

56

Temporal Logic Model Checkers as Applied in Computer Science

BDDs tend to blow up in size for large systems. Conventional BDDs

have topped out for systems with a few hundred state variables. BDD based
algorithms are very sensitive to the variable ordering.

4.2. The Boolean satisfiability

The Boolean SATisfiability (SAT) problem is the problem of finding
an assignment to the set of propositional letters such that a boolean formula

will have the value ‘true’ under this assignment. In other words, SAT pro-
blem posed on a formula is to determine whether there exists a variable as-

signment under which the formula evaluates to true.50 The SAT problem is
known to be NP -Complete. However, over the years there has been tremen-

dous progress in SAT solvers technology.51 Most modern SAT solvers are
based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm (Da-

vis, Logemann & Loveland 1962, Davis & Putnam 1960). Improvements in
SAT solver technology have led to the development of several powerful SAT

solvers (Prasad et at. 2005). If the formula is satisfiable, a counterexample
can be extracted from the output of the SAT procedure. If the formula is

not satisfiable, the system and its specification can be unwound more to
determine if a longer counterexample exists.

SAT-based bounded model checking is an alternative to the BDD ap-
proach (Biere, Cimatti, Clarke & Zhu 1999). This approach can accommo-

date larger systems than the BDD approach. The efficiency of SAT pro-
cedures has made it possible to handle ICT systems much larger than any

BDD-based model checker is able to do.
BDD-based symbolic verification algorithms are typically limited by

memory resources, while SAT-based verification algorithms are limited by
time resources (Grumberg, Heyman, Ifergan & Schuster 2005). It is widely

acknowledged that the strength of SAT-based algorithms lies primarily in
falsification, while BDD-based model checking continues to be the de facto

50 The annual award, which recognizes a specific fundamental contribution or series
of outstanding contributions to the CAV field was established in 2008 by the steering
committee of the International Conference on Computer Aided Verification. In 2009 the
award was given to Conor F. Madigan, Kateeva, Inc.; Sharad Malik, Princeton University;
Joao P. Marques-Silva, University College Dublin, Ireland; Matthew W. Moskewicz, Uni-
versity of California, Berkeley; Karem A. Sakallah, University of Michigan; Lintao Zhang,
Microsoft Research and Ying Zhao, Wuxi Capital Group. The award includes a $10,000
prize and was presented with the citation:

For fundamental contributions to the development of high-performance Boolean
satisfiability solvers.

51 The progress is summarized in a survey (Zhang & Malik 2002, Prasad, Biere & Gup-
ta 2005).

57

Kazimierz Trzęsicki

standard for verifying properties (Prasad et al. 2005, Biere, Cimatti, Clarke,

Strichman & Zhu 2003).
However the SAT approach only explores for “close” errors at depth

bounded by k where typically k ranges from a few tens to hundreds of
steps. In general, it cannot find “deep” errors and provide verification of

correctness.

4.3. Partial order reduction

Concurrency is a major practical obstacle to model checking: the inter-

leaving of concurrent threads causes an exponential explosion, and if threads
can be dynamically created, the number of control states is unbounded.

Partial Order Reduction (PRO, for short) helps improve the performance
of a model-checker by eliminating the interleaving of independent actions by

reducing the number of interleavings of independent concurrent transitions.
The earliest identifiable connection between parallel processing and the

central idea behind POR (long before that term was coined) appears in Lip-
ton’s work of (1975) on optimizing P/V programs for the purpose of efficient

reasoning. In that work, Lipton identifies left and right movers – actions
that can be postponed without affecting the correctness of reasoning. Addi-

tionally, in the parallel compilation literature (e.g., (Rinard & Diniz 1997)),
it has been observed that by identifying computations that “commute,” one

can schedule these computations for parallel evaluation without interference.
The explosion of states and transitions in a model results from the

interleaving of actions of distinct processes in all possible orders. In general,
the consideration of all such interleavings is crucial – bugs in concurrent

systems often correspond to the unexpected ordering of actions. However, if
a set of transitions is entirely independent and invisible with respect to the

property being verified,52 the order in which transitions are executed does
not affect the overall behavior of the system. POR (Emerson, Jha & Peled

1997, Godefroid 1996, Peled 1996a) exploits this fact, and considers only one
representative ordering for any set of concurrently enabled, independent,

invisible transitions.
POR methods rely on determining a suitable subset of transitions to

be considered at every state. As a result, rather than exploring a structure
M, an equivalent (usually smaller) structure M

′ is explored, with fewer

transitions and states.

52 A transition is invisible with respect to a property φ if the truth of φ is unaffected
by the transition.

58

Temporal Logic Model Checkers as Applied in Computer Science

The particular subset (and correspondingly, equivalence relation) de-

pends upon the strategy being used. A common strategy, for example, is
the ample sets method (Peled 1996b). This is the method chosen for the

POR implementation in Spin (Holzmann 2003, Holzmann & Peled 1994).
To describe this method let us suppose that a property φ is to be veri-

fied. For any state s reached along a search path, rather than considering
all of the transitions enabled at s [enabled(s)], an ample set [ample(s)] of

transitions is chosen in such a way to ensure that
• any transition t ∈ enabled(s) which is not in ample(s) is independent

of all transitions in ample(s). That is, the execution of t does not affect
the enabledness of any of the transitionsnin ample(s), and vice versa.

• All transitions in ample(s) are invisible.
• If a ∈ ample(s), then the state resulting from taking transition a from

s has not been reached along the current search path.
In the discussed case, the equivalence relation is a trace equivalence. Two

transition sequences are said to be trace equivalent if one can be obtained
from the other by repeatedly commuting the order of adjacent, independent

transitions. Using the ample sets method, every transition sequence in the
original structure M is trace equivalent to a transition sequence in the re-

duced structure M
′. It follows that for any stuttering-closed (Peled 1996b)

LTL formula φ:M |= φ iff M
′ |= φ.

Other strategies for determining suitable subsets of transitions include
the stubborn sets method (Valmari 1992) or the sleep sets and persistent

sets method (Godefroid 1996b) which is implemented in VeriSoft (Gode-
froid 1997).

For some systems wherein all actions are independent, POR cannot
offer any improvement in verification space or time. In many realistic cases,

however, POR can be extremely effective. For example, for some systems
the growth of the state-space as the number of processes increases is reduced

from exponential to polynomial when POR methods are used. In others, the
global state-space may increase with the growth of a parameter, whereas the

size of the reduced state-space remains unchanged (Godefroid 1996a).

4.4. Abstraction

Abstraction is certainly the most important technique for handling the

state explosion problem. It plays an important role in the verification of
infinite-state systems.

The abstraction is a method of suppressing details of a given model
M to obtain a smaller model M that is equivalent to M for purposes of

verification. M and M can differ considerably.

59

Kazimierz Trzęsicki

Abstractions should preserve the (non-)validity of the properties that

need to be checked.
The abstraction is exact if and only if the correctness ofM is equivalent

to correctness of M. An abstraction is conservative if correctness of M

implies correctness of M.

For the purpose of abstraction bisimulation and simulation relations
can be exploiting. In the case of bisimulation (Park 1981) M and M can-

not be distinguished by any “reasonable” temporal logic (Emerson 2008,
p. 38). If systems are bisimilar, the abstraction is exact. Using bisimulation

as a pre-processing phase to model checking does reduce the resource requ-
irements of model checking. Bisimulation may also be applied in symbolic

model checking, because bisimulation can be computed as a fixpoint of a sim-
ple boolean expression. An abstraction obtained fromM by partitioning and

clustering states in the natural way will be conservative. A simulation from
M to M yields a conservative abstraction.

IfM is incorrect the abstraction may be too coarse. Repeatedly refining
it as needed and as resources permit typically leads to determination of

correctness vs. incorrectness for M (Kurshan 1995).
If state spaces are too large abstractions can be made with respect to

a single property. In such a case, different abstractions have to be considered
for any particular property.

If only a part of state space is explored, the verification result is not
precise and correctness of a system is only probable.53

The symmetry abstraction is based on the fact that subcomponents of
M may be symmetrical and for this reasons as redundant can be identifying.

A key technique for the verification of programs is Counter-Example
Guided Abstraction Refinement (CEGAR).54 CEGAR begins checking

with a coarse (imprecise) abstraction and iteratively refines it. When
a counter-example is found, the question raises if the violation is genuine or

the result of an incomplete abstraction. If the violation is not feasible, the
proof of infeasibility is used to refine the abstraction and checking begins

again (Clarke, Grumberg, Jha, Lu & Veith 2000).
Abstraction is employed already at the design phase: a representative

system is abstracted out which captures the higher level behavior of the
system. Abstractions are often applied as a pre-processing phase in model

checking.

53 Probabilistic verification, a model checking technique that is based on a partial
state-space exploration should not be confused with verifying probabilistic systems.
54 A prominent safety-checking tool based on CEGAR is Blast, see p. 87.

60

Temporal Logic Model Checkers as Applied in Computer Science

Abstraction is useful for reasoning about concurrent systems that con-

tain data paths. The specification of systems that include data paths usually
involves fairly simple relationship among the data values of the system.

The reduction due to abstraction can result in exponentially smaller
number of states. For example (Emerson 2008, p. 38), a resource controller

with 150 homogeneous processes of size about 1047 states can be model chec-
ked over the abstract M in a few tens of minutes (Emerson & Sistla 1997).

Abstraction is typically a manual process, often requiring considerable
creativity. In order for model checking to be used more widely in industry,

automatic techniques are needed for generating abstractions.

4.5. Lazy abstraction

The common methods of model checking are either precise or they are

scalable, depending on whether they track the values of variables or only
a fixed small set of data flow facts (e.g. types), and are usually insufficient

for precisely verifying large programs. Lazy Abstraction (LA) achieves both
precision and scalability by localizing the use of precise information.

The model checking method is based on the abstract-check-refine para-
digm:55. LA tightly integrates and optimizes the three steps of the loop:

abstract-check-refine.
The lazy abstraction is built on-the-fly and is parsimonious: different

parts of the state space use different abstractions, namely they are only as
precise as is required to verify that part of the system. The refinement is

on-demand, i.e., the model used in the previous iteration may be re-used,
and it is local, i.e., only the abstract states which comprises a spurious coun-

terexample are refined, so that only the small part of the abstraction through
which the abstract counterexample path passes is refined, and re-analyzed.

Model checking is not repeated for those parts of the system that are known
to be error-free.

Instead of iteratively refining an abstraction, single abstract model is
built and refined on demand, so that different parts of the model may exhi-

bit different degrees of precision, namely just enough to verify the desired
property (Henzinger, Jhala, Majumdar & Sutre 2002, McMillan 2002).

The lazy abstraction methodology reduces the space and time require-
ments considerably.

The abstract-check-refine loop is not guaranteed to terminate in general.
LA is implemented in model checker Blast.

55 Abstract-check-refine approach follows three steps: build an abstract model, then
check the desired property, and if the check fails, refine the model and start over.

61

Kazimierz Trzęsicki

4.6. Local and global model checking

The model-checking algorithms can be classified into (Petcu 2003,

Schneider 2003):
• global
• local.
The global algorithm will compute all states that satisfy a given formula.

This method is based on generating the whole state-space whereas the local
algorithm will only check a formula for one state (typically the initial system

state). Local model checking partially constructs the state-space one step
at a time until a solution is reached.

Global and local model checking procedures follow radically different
paradigms (Schuele & Schneider 2004): while global model checking aims at

computing all states where a given specification holds by means of fixpoint
iterations, in contrast, local model checking directly answers the question

whether a given set of states satisfies the specification by means of deduc-
tion and induction. Local model checking algorithms based on logics like

the µ-calculus and use a tableau-based procedure. For the verification of fi-
nite state systems, this may result in different runtimes. Nevertheless, both

algorithms run in time linear in the size of the transition system and the
length of the formula. For the verification of infinite state systems, however,

the differences are far more important. Since most problems are undecidable
for such systems, it may be the case that one of the procedures does not

terminate.
In global model checking, the syntax tree of a specification is traversed

in a bottom-up manner, whereas in local model checking, a specification
is evaluated top-down. A major advantage of the latter approach is that

subformulas can be checked by need, i.e., in the spirit of lazy evaluation.
Global procedure requires the a priori generation of all system states,

and storing these states may consume large quantities of memory. In the
case of local procedure, there is no need for the state space to be known in

advance, it can be constructed incrementally, as the model checking com-
putation proceeds. The size of the state space, actually has to be explored

depends on how much of it turns out to be relevant to establishing satisfac-
tion of the formula to be verified. The main drawback of the local procedure

is that often the entire state space is generated (like checking that a property
holds globally). In the worst case, algorithms will exhibit the same storage

requirements as those of global algorithms, in practice they generally use
less.

62

Temporal Logic Model Checkers as Applied in Computer Science

4.7. Checking of finite and infinite states systems

Model checking (Clarke et al. 1999) is a technique used for verifying the

correctness of finite state systems and usually restricted to propositional
logics. The restriction to propositional logic is not so important from the

point of view of practice as it may seem at first glance (Kroger & Merz 2008,
p. 376). In the case of finite domain, first-order logic formulas are reducible

to finite conjunction – if the formula says about all the elements of the
domain – or finite disjunction – if the formula says about some elements of

the domain – of propositions each of which is about exactly one element of
the domain. Thus, systems properties of finite state transition system may

be encoded in propositional temporal logic.
In many areas one has to deal with infinite state spaces (Schuele

& Schneider 2004, Esparza 2003). There are different “sources of infinity”
and at least five of them could be pointed out:

• Data manipulation: data structures over infinite domains – natural
numbers, integers, etc.

• Control structures: unbounded call stacks or dynamic creation of pro-
cesses.

• Asynchronous communication: unbounded queues for process communi-
cation.

• Parametrization: infinite families of distributed systems.
• Real-time constraints: timing constraints based on real-valued clocks.
For finite state systems, termination of the model checking algorithms

is guaranteed. Unfortunately, this does not hold for systems with infinite

state spaces. Consequently, techniques are required to achieve termination,
e.g., by using additional information such as invariants and well-founded

orderings. As another problem, propositional logic and hence BDDs are
naturally limited to the representation of finite sets and do not allow us

to reason about systems with infinitely many states. Hence, we need more
powerful representations that enable us to deal with infinite sets. To this

end, e.g., Presburger arithmetic (Presburger 1929, Enderton 1972) has been
proposed which can be translated to finite automata to obtain efficient tools

(Burkart, Caucal, Moller & Steffen 2001).
Initial work on the verification of infinite state systems was done

by Bradfield & Stirling in (1991), where the authors established proof rules
for a tableau calculus. Some years later, Bultan, Gerber, and Pugh (1997,

1999) proposed a method for global model checking of infinite state systems
by means of Presburger arithmetic.

63

Kazimierz Trzęsicki

4.8. Explicit and symbolic checking

Originally model checking used an explicit representation of states.

State spaces of systems increase exponentially with the number of variables
and concurrent components. Hence, a naive implementation of the explicit

state enumeration is infeasible. Instead of explicite state enumeration the
method of symbolic representation may be applied. Thus model checking

algorithms can be classified into (Clarke & Veith 2003, p. 211):
• explicit,
• symbolic.
Symbolic representations are mathematical objects with semantics cor-

responding to sets of states. The algorithm is symbolic in the sense that it
manipulates sets of states, instead of states. Sets of states are represented

implicitly by means of predicates. Symbolic algorithms employ data structu-
res such as BDD to describe sets of states and transitions. Model checking

is performed directly on the BDD representations. BDD made symbolic
model checking popular (Burch et al. 1992).

Symbolic model checking is first introduced with the work of McMil-
lan (Burch et al. 1990, McMillan 1993), in which BDD data structure is

used to implicitly (as opposed to explicitly) represent the set of states and
the transition relation between states (Bryant 1986). Since then, symbo-

lic model checking is used to refer to a technique used in model checking
to implicitly represent and manipulate the states and the transition re-

lation of a system. A particular symbolic approach (namely BDD-based
encoding) has proved especially successful for the verification of CTL pro-

perties for very large systems (McMillan 1993). Although the techniques
of model checking were oriented toward the verification of hardware circu-

its (Bryant & Chen 1995, Clarke, Grumberg, Hiraishi, Jha, Long, McMil-
lan & Ness 1993, Burch, Clarke, Long, MacMillan & Dill 1994), they

have been extended and applied to probabilistic systems and timed sys-
tems, for which corresponding symbolic data structures have also been

developed.
Symbolic algorithm avoids ever building the graph, where the Kripke

structure is not described in extension (by a description having size |S|, as
in enumerative methods); instead it represents the structure implicitly via

more succinct data structures, most often some kind of restricted logical
formula for which efficient constraint-solving techniques apply. Symbolic

algorithms verify systems that defy enumerative methods (Burch et al. 1992,
McMillan 1993). There are also systems on which they do not perform better

than the naive non-symbolic approach (an approach that can be defined as

64

Temporal Logic Model Checkers as Applied in Computer Science

“build the structure enumeratively and then use the best model checking

algorithm at hand”).
Explicit algorithms are algorithms which work directly on the Kripke

structure, and construct necessary parts of the Kripke structure on-the-fly,
using methods such as partial order reduction to prune the search space.

Techniques adopted to reduce the state space may cause some loss of infor-
mation. This may be unacceptable, for example when safety properties are

verified. One of the most successful approaches that can allow a larger state
space to be explored is symbolic model checking.

Fixpoints corresponding to truth sets of checked temporal formulas can
be computed by aggregating sets of states iteratively. Properties which requ-

ire more than one fixpoint computation can be computed recursively start-
ing from the inner fixpoints and propagating the partial results to the outer

fixpoints.
Symbolic model checking is one of the most successful approaches

to reducing the space requirements that have been investigated (Burch
et al. 1992). By introducing symbolic representations for sets of states

and transition relations and using of a symbolic model checking, systems
with very large state spaces (10100 or more states) can be verified (Burch

et al. 1990, Coudert et al. 1990). Further, the time and space requirements
with these techniques may in practice be polynomial in the number of com-

ponents of the system. In many cases, symbolic algorithms achieve great
reductions in the size of the data structures, and thus help to alleviate the

state explosion problem. Unfortunately, the symbolic procedures still have
limits, and many realistic problems are not tractable due to their size.

Symbolic Model Checking (Burch et al. 1990) uses Boolean formulas
to represent sets of states and transition relations. Traditionally, symbolic

model checking has become identified with BDD (Bryant 1986), a cano-
nical form of representing Boolean formulas. Some other representations,

like Conjunctive Normal Form (CNF) using SAT and polynomial algebra
have been demonstrated to be quite powerful in practice. Most Symbolic

Model Checkers exploit Tarski’s Lemma that every monotonic functional
on a complete lattice has a fixpoint.

Symbolic algorithms have often been proved useful in practice in tackl-
ing the state-explosion problem (Holzmann 1991, McMillan 1993, Bouajjani

et al. 1997).
Traditionally, explicit methods are typical of LTL, while symbolic me-

thods have been used primarily for CTL model checking. At the beginning,
the techniques of symbolic model checking was oriented at verification of

hardware systems (Mishra & Clarke 1985, Bryant & Chen 1995, Clarke,

65

Kazimierz Trzęsicki

Grumberg, Hiraishi, Jha, Long, McMillan & Ness 1993, Burch et al. 1994).

In order to improve the efficiency a hybrid approach it combines features of
both the symbolic and explicit implementations.

4.9. Bounded model checking

BoundedModel Checking (BMC) is an attractive alternative to sym-
bolic model checking, since it often allows a more efficient verification (Schu-

ele & Schneider 2007). The idea of BMC is to reduce the model checking
problem to a satisfiability problem of the underlying base logic, so that

sophisticated decision procedures can be utilized to check the resulting for-
mula (Biere, Cimatti, Clarke, Fujita & Zhu 1999, Biere, Cimatti, Clarke

& Zhu 1999). This technique is based on SAT-method. It is a method wi-
thout BDDs which uses much less space than BDD-based approaches.

The basic idea is to consider counter examples of a particular length and
generate a propositional formula that is satisfiable iff such a counter example

exists. In BMC, if the checked formula is satisfiable, a counterexample can
be extracted from the output of the SAT procedure. If for a bounded length

k the formula is not satisfiable, it can be unwound more to determine if
a longer counterexample exists, k is increased. The process can be repeated

with larger and larger values of k until all possible violations have been
ruled out. This process terminates when the length of the potential counter-

example exceeds its completeness threshold (i.e., k is sufficiently large to
ensure that no counterexample exists) or when the SAT procedure exceeds

its time or memory bounds.
The bounded model checking for LTL can be reduced to propositional

satisfiability in polynomial time (Biere, Cimatti, Clarke & Zhu 1999).
The disadvantage of BMC is that it is an incomplete SAT-based formal

verification method. BMC is effective for showing the presence of errors.

Thus, it is typically only applicable for refutation; the completeness thre-
shold is too large for most practical instances. It is not at all effective for

showing that a specification is true unless the diameter of the state space is
known.

4.10. LTL and CTL model checking

In temporal logic, model checking can be divided into:
• LTL model checking

– if verified system is specified using linear time model,
• CTL model checking

– if verified system is specified with branching time model.

66

Temporal Logic Model Checkers as Applied in Computer Science

The model checking problem for LTL can be restated as:

given M and φ, does there exists a path of M that does not satisfy φ?

One approach to LTL model checking is the tableau approach described
in e.g. (Müller-Olm, Schmidt & Steffen 1999). The other approach, the

automata-theoretic approach is more efficient (Lichtenstein & Pnueli 1985)
and (Vardi & Wolper 1986a).

The model checking algorithm for CTL (Clarke et al. 1986, Quielle
& Sifakis 1982) works by successively marking the states which satisfy sub-

formulas of the formula to be checked. The particular form of algorithm
used depends on the formula.

CTL∗ model checking was first introduced in (Clarke et al. 1986). A me-
thod for checking CTL∗ properties (Emerson & Lei 1987) involves the use

of an LTL model checker on the subformulas of the property to be checked.
Most modal checkers are used to verify either CTL or LTL properties,

but not both.

4.11. Büchi automaton

Automata theory plays a central role in formal methods. These al-

ternative techniques for verifying ICT systems in some cases may be
used as they can be more expressive or succinct than temporal logic. In

automata-theoretic approach, both the system and the specification are de-
scribed in automata. And questions about systems and their specifications

can be reduced to questions about emptiness and containment of automata.
Temporal logic and automata provide different means to describe tempo-

ral structures. TL formulas are more “declarative”, whereas automata are
more “operational” in nature. For the purpose of model checking a kind

of automaton that is suited for accepting ω-regular languages is needed.
Automata-theoretic approach includes: (finite state) automata (on infinite

strings) which accept infinite inputs by infinitely often entering a designated
set of automaton states. The use of ω-automata for automated verification

was first proposed by Vardi and Wolper (1986b, 1986a). ω-automata are
finite automata operating on infinite words. Nondeterministic Büchi auto-

mata (NBAs) are the simplest ω-automata. They look exactly like finite
automata. However, they operate on infinite words, and they have a diffe-

rent acceptance condition. Büchi automata are FSAs defined over infinite
runs. The syntax of non-deterministic finite automata, NBAs is exactly the

same as for NFAs. The automata differ in their semantics: the accepted
language of NBA is an ω-language, whereas the accepted language of an

NFA is a language of finite words. The intuitive meaning of the acceptance

67

Kazimierz Trzęsicki

criterion is that the set of accepted states has to be visited infinitely often.

Thus, the accepted language consists of all infinite words that have a run in
which some accept state is visited infinitely often. ω-automata is a formalism

widely used by researchers and engineers alike.

Definition 14

Nondeterministic Büchi Automaton (Buchi 1960) A is a tuple:56

A = 〈S,Σ, δ, I, F 〉,

where

• S is a finite set of states,
• Σ is an alphabet,

• δ:S × Σ → 2S is a transition function,
• I ⊆ S is a set of initial states, and

• F ⊆ S is a set of accept (or: final) states, called the acceptance set.

A run for δ = A0A1A2 . . . ∈ Σω denotes an infinite sequence s0s1s2 . . .

of states in A such that s0 ∈ I and si
Ai

−→ si+1 for i ≤ 0. Run s0s1s2 . . . is
accepting if si ∈ F for infinitely many indices i ∈ N. The accepted language

of A is

Lω(A) = {σ ∈ Σω| there exists an accepting run for σ in A}.

The size of A, denoted |A|, is defined as the number of states and transitions
in A.
As for an NFA, the transition function δ is identified with the induced

transition relation →⊆ S × Σ × S which is given by

s A
−→ p if and only if p ∈ δ(s,A).

Since the state space S of an NBA A is finite, each run for an infinite
word σ ∈ Σω is infinite, and hence visits some state s ∈ S infinitely often.
Acceptance of a run depends on whether or not the set of all states that

appear infinitely often in the given run contains an accept state. The defini-
tion of an NBA allows for the special case where F = ∅, which means that
there are no accept states. Clearly, in this case, no run is accepting. Thus
Lω(A) = ∅ if F = ∅. There are also no accepting runs whenever, I = ∅ as
in this case, no word has a run.

56 See eg. (Baier & Katoen 2008, p. 174).

68

Temporal Logic Model Checkers as Applied in Computer Science

Definition 15

Let A = 〈S,Σ, δ, I, F 〉, be an NBA. A is a Deterministic Büchi Auto-
maton (DBA), if |I| ≤ 1 and |δ(s,A)| ≤ 1, for all s ∈ S and A ∈ Σ. A is
total if |I| = 1 and |δ(s,A)| = 1, for all s ∈ S and A ∈ Σ.

In the case of finite automata, each non-deterministic automaton can

be converted into a language-equivalent deterministic automaton. This is
not the case with Büchi automata. It means that NBAs are strictly more

expressive than DBAs.

Definition 16

A Generalized Nondeterministic Büchi Automata GNBA is a tuple:

G = 〈S,Σ, δ, I,F〉,

where S,Σ, δ, I are defined as for an NBA and F is a (possibly empty)
subset of 2S .

The elements F ∈ F are called acceptance sets. Runs in a GNBA are
defined as for an NBA. That is, a run in G for the infinite word A0A1 . . . ∈
Σω is an infinite state sequence s0s1s2 . . . ∈ Sω such that s0 ∈ I and si+1 ∈
δ(si, Ai), for all i ≤ 0.

Every LTL formula can be represented as a Büchi automaton (Wolper,
Vardi & Sistla 1983, Vardi & Wolper 1994, Holzmann 2004). Büchi auto-

maton applied in LTL has been generalized for branching temporal logic
(Vardi & Wolper 1986). The idea is the same as in LTL. Three automata are

distinguished: local (that in essence does not differ from the automaton for
LTL); existential eventuality (that correspond to eventuality expressed by

the formula EφUψ) and universal eventuality (that correspond to the even-
tuality expressed by the formula AφUψ). These three automata are reduced

to one that accepts the intersection of their languages (Wolper 1995).

4.12. On-the-fly model checking

It is not always necessary to build the entire state-space in order to
determine whether or not a system satisfies a given property. The algo-

rithm is on-the-fly in the sense that the state-space is generated dynamically
and only the minimal amount of information required by the verification

procedure is stored in memory (Bouajjani et al. 1997). It means that states

69

Kazimierz Trzęsicki

are computed and stored on demand, while in other algorithms, the whole

state-space has to be generated a priori.
If the property to be checked is false, only part of the state-space needs

to be constructed; it can be stopped as soon as an error state or viola-
ting cycle is found. This means that although debugging can be performed

relatively easily, property verification very quickly becomes prohibitive.
On-the-fly methods are most suitable for model checking algorithms

based on a depth-first traversal of the state-space (i.e., explicit state me-
thods) and have been developed to check specifications in LTL, CTL and

CTL∗ (Vardi & Wolper 1986a, Vergauwen & Lewi 1993, Bhat, Cleaveland
& Grumbero 1995).

On-the-fly method is applied for explicit model checking. Nevertheless,
there are some approaches for combining on-the-fly techniques with sym-

bolic model checking exist (Ben-David & Heyman 2000). Usually they are
restricted to checking safety properties.

On-the-fly algorithms have often been proved useful in practice in tackl-
ing the state-explosion problem (Holzmann 1991, McMillan 1993, Bouajjani

et al. 1997).

4.13. Symmetry reduction

The use of symmetry reduction to increase the efficiency of model check-
ing has inspired a wealth of activity in the area of model checking re-

search. The earliest use of symmetry reduction in automatic verification
was in the context of high-level (colored) Petri nets (Huber, Jenson, Jepson

& Jenson 1985), where reduction by equivalent markings was used to con-
struct finite reachablility trees. These ideas were later extended for deadlock

detection and the checking of liveness properties in place/transition nets
(Starke 1991).

Concurrent systems often contain many replicated components and as
a consequence, model checking may involve making a redundant search over

equivalent areas of the state-space. Inherent symmetry of the original sys-
tem will be reflected in the state-space. Therefore, knowledge of the sym-

metry of the system can be used to avoid searching areas of the state-space
which are symmetrically equivalent to areas that have been searched previo-

usly (Miller et al. 2006). Most symmetry reduction techniques exploit this
type of symmetry by restricting the state-space search to equivalence class

representatives, and often result in significant savings in memory and verifi-
cation time (Bosnacki, Dams & Holenderski 2002, Clarke, Enders, Filkhorn

& Jha 1996, Emerson & Sistla 1996, Ip & Dill 1996).

70

Temporal Logic Model Checkers as Applied in Computer Science

4.14. Modular verification

Modular verification is another possible way to combat the state-space
explosion problem. Efforts to develop modular verification frameworks were

undertaken in the mid 1980s (Pnueli 1985a). The verified system is de-
composed into subproblems of manageable complexity. The decomposition

reflects the modularity in the design.
In modular verification the specification includes two parts. One part

describes the desired behavior of the module. The other part describes the
assumed behavior of the system within which the module is interacting

[Kupferman & Vardi (1995, 1996, 1997, 1998)].
Grumberg and Long (1994) have proposed a method for modular veri-

fication in assume-guarantee style, where both assumptions and guarantees
are expressed in BTL. In the context of modular verification, it is advan-

tageous to use only ACTL or ACTL∗, that is universal fragments of CTL
and CTL∗ without E, existential path quantifiers. The ACTL and ACTL∗

formulas have the helpful property that once they are satisfied in a mo-
dule, they are also satisfied in a system that contains this module (Shurek

& Grumberg 1990).
For the LTL paradigm, in the assume-guarantee specification, both

the assumption and guarantee are specified as LTL formulas. The model
checking under assume-guarantee specification with respect to the LTL for-

mula formed as assumption implies guarantee. In another approach, the
assume-guarantee pair consists of a linear temporal assumption and a bran-

ching temporal guarantee.
The modular analysis is applied to such programs as, e.g, Linux, which

contains thousands of device drivers that are developed independently by
many developers. Though each individual driver source code is relatively

small – ≈10k lines of code – the whole operating system contains a few
million lines of code (Post & Küchlin 2006).

4.15. Model checking of timed systems

So far there are discussed systems that describe how a system may
evolve from one state to another. Timing aspects are, however, not cove-

red. There are some applications where it is desirable to consider aspects of
timing behavior. Systems such as device drivers from ABS braking techno-

logy in cars to avionics control, coffee machines, communication protocols,
and automatic teller machines, to mention a few, must react in time, they

can be viewed as timed systems, in that their correct behavior depends
crucially on their meeting various timing constraints (Laroussinie, Markey

& Schnoebelen 2004) (Laroussinie, Markey & Schnoebelen 2005) (Lasota

71

Kazimierz Trzęsicki

& Walukiewicz 2005). For a train crossing it is essential that on detecting

the approach of a train, the gate is closed within a certain time bound in
order to halt car and pedestrian traffic before the train reaches the cross-

ing. For a radiation machine the time period during which a cancer patient
is subjected to a high dose of radiation is extremely important; a small

extension of this period is dangerous and can cause the patient’s death.
Correctness in time-critical systems not only depends on the logical result

of the computation but also on the time at which the results are produced.
(Baier & Katoen 2008, Ch. 9).

For some applications discrete time domains are appropriate: one time
unit corresponds to one clock pulse. The next-step operator can be used to

“measure” the discrete elapse of time and temporal logics LTL and CTL
are eligible to express timing constraints. A continuous time model is more

adequate and more intuitive for systems in which components may proceed
at distinct speeds (Baier & Katoen 2008, Ch. 9).

In order to express timing constraints, the logical formalisms have to
be extended to allow expression of the ordering of states, with a notion of

quantitative time. There are different formalisms for modeling timed sys-
tems, among which, timed automata57 which were proposed by Alur and

Dill (1994), are one of the most successful formalisms for the description of
timed systems. Timed specifications can be based on metric temporal logic

http://www.comlab.ox.ac.uk/projects/timedsystems/.
Formal analysis methods for timed systems are more difficult compare

to untimed systems. There are three factors which affect the size of the state
space. The state space under consideration grows exponentially with (Daws

& Tripakis 1998):
• the number of concurrent components,
• the number of clocks
and

• the length of the clock constraints used in the model and the specifica-
tion.

Unlike traditional model checking which is performed on finite state
automata, timed automata have infinite state space because of the real

value of the clocks. Since clocks are real-valued, the state space of timed
automata is infinite. Much of the work on model checking timed automata

is focused on using a finite representation for the infinite state space.

57 Timed automata are automata extended with clocks that progress synchronously
with time.

72

Temporal Logic Model Checkers as Applied in Computer Science

Model checking has been successfully implemented for real-time systems

which are modeled as timed automata (Alur & Dill 1994) and a number of
tools for automatic verification of systems have emerged:

– Uppaal www.docs.uu.se/docs/rtmv/uppaal/,
– Kronos www.verimag.imag.fr/TEMPORISE/kronos/,

– HyTech www.cad.eecs.berkeley.edu/~tah/HyTech/.
These tools have reached a state, where they are mature enough for appli-

cation on realistic case studies (Bengtsson, Griffioen, Kristoffersen, Larsen,
Larsson, Pettersson & Yi 1996).

5. Model checkers

By a model checker we mean a procedure which checks if a transition
system is a model for a formula expressing a certain property of this system

(Clarke et al. 1986).
The late eighties and the nineties have produced a number of “checkers”

verifying complex aspects of industrial designs. Since then, model checkers
are common in many industrial settings where applications are safety critical

or economically vital. There is a wide variety of these tools available, with
a number of different capabilities suited to different kinds of problems. The

variety is of great benefit to practitioners. They have to know which tools
are available and which tools to chose for a particular problem.

An analysis in performing property checking is sound “if every true error
is reported by the analysis”. The analysis is complete “if every reported error

is a true error”. The third claim concerning the analysis is its usefulness: “if
it finds error someone cares about”.

Model checking tools typically include a modeling language for repre-
senting the program corresponding to a verified structure, a specification

logic such as CTL or LTL for capturing correctness properties, a model
checking algorithm that is often fixpoint based. Some of these are academic

tools, others are industrial internal tools, and some are for sale by CAD
vendors. Anything with a finite state structure (e.g., decision processes,

reliability models, planning in AI) can be approached through model check-
ing. Even some systems with an infinite number of states can be amenable

to model checking, if there is a suitable finite representation of infinite sets
of states in terms of symbolic constraints. Today, software, hardware and

CAD companies employ several kinds of model checkers. In software, Bell
Labs, JPL, and Microsoft, government agencies such as NASA in USA,

in hardware and CAD, IBM , Intel (to name a few) have had tremendous

73

Kazimierz Trzęsicki

success using model checking for verifying switch software, flight control

software, and device drivers.
Some programs are grouped as it is in the case of Model-Checking

Kit http://www.fmi.uni-stuttgart.de/szs/tools/mckit/overview.shtml.
This is a collection of programs which allow to model a finite-state system

using a variety of modeling languages, and verify it using a variety of chec-
kers, including deadlock-checkers, reachability-checkers, and model-checkers

for the temporal logics CTL and LTL. The most interesting feature of the
Kit is that:

Independently of the description language chosen by the user, (almost) all
checkers can be applied to the same model.

The counterexamples produced by the checker are presented to the user in
terms of the description language used to model the system.

The Kit is an open system: new description languages and checkers can
be added to it.

The description languages and the checkers have been provided by rese-
arch groups at the Carnegie-Mellon University, the University of Newcastle

upon Tyne, Helsinki University of Technology, Bell Labs, the Brandenburg
Technical University at Cottbus, the Technical University of Munich, the
University of Stuttgart, and the Humboldt-Universität zu Berlin.

Below, we give a few examples of model checkers. Usually their descrip-
tion will be taken from their website’s home pages.

5.1. Explicit State-Based Model Checkers

Two of the most popular on-the-fly, explicit-state-based model chec-
kers are Spin (Simple Promela INterpreter) and Murφ or Murphi (Dill,

Drexler, Hu & Yang 1992, Dill 1996).
Other state-based verifiers include branching time temporal logic CTL

Prod. It supports verification of CTL properties from the reachability
graph, and on-the-fly verification of LTL-properties (Varpaaniemi, Halme,

Hiekkanen & Pyssysalo 1995).
Prod is an advanced tool for efficient reachability analysis.58 It im-

plements different advanced reachability techniques for palliating the state
explosion problem, including partial-order techniques like stubborn sets and

sleep sets, and techniques exploiting symmetries. Prod is distributed by the

58 Reachability analysis asks whether a system can evolve from legitimate initial states
to unsafe states. It is thus a fundamental tool in the validation of the ICT systems.

74

Temporal Logic Model Checkers as Applied in Computer Science

Formal Methods Group of the Laboratory for Theoretical Computer Science

at the Helsinki University of Technology www.fortunecity.com/banners/
interstitial.html www.tcs.hut.fi/prod/proddescription.html.

Pep (Programming Environment based on Petri nets) http://parsys.
informatik.uni-oldenburg.de/~pep/;http://sourceforge.net/projec

ts/peptool (Best &‘ Grahlmann 1996), in which systems are specified using
Petri nets.

The on-the-fly verification of various temporal or µ-calculus properties
of Lotos (LanguageOfTemporalOrdering Specification) http://www.cs.

stir.ac.uk/ kjt/research/well/well.html specifications is achieved by
translation into state-spaces usingCæsar http://www.inrialpes.fr/vasy

/cadp.html (Garavel & Sifakis 1990), which are then checked using the
model checkers Xtl (eXecutable Temporal Language) http://www.inrial

pes.fr/vasy/cadp/man/xtl.html (Mateescu & Garavel 1998) or Evalua-
tor (Mateescu 2003), respectively.

Cospan (COordinated SPecification ANalysis), (Kurshan 1995, Alur
& Kurshan 1995, Hardin, Harel & Kurshan 1996) is an ω-automata-based

tool. The system to be verified is modeled as a collection of coordinating
processes described in the selection/resolution modeling language. The veri-

fier supports both on-the-fly enumerative search and symbolic search using
BDDs. Cospan is the core engine of the commercial verification tool from

Lucent Technologies Inc.

5.1.1. Spin

Spin is a popular open-source software tool. It is one of the most po-

werful standard model checking tools. It was conceived by Gerard J. Holz-
mann (Bell Laboratories in Murray Hill, New York and afterwards NASA’s

Jet Propulsion Laboratory in Pasadena, California) in 1980 for verifying
communications protocols. At the beginning of the website’s home page

http://spinroot.com/spin/whatispin.html we read:

Spin is a popular open-source software tool, used by thousands of people
worldwide, that can be used for the formal verification of distributed software
systems. The tool was developed at Bell Labs in the original Unix group of
the Computing Sciences Research Center, starting in 1980. The software has
been available freely since 1991, and continues to evolve to keep pace with new
developments in the field. In April 2002 the tool was awarded the prestigious
System Software Award for 2001 by the ACM.

Spin has two principle modes of operation: simulation and verification.

Properties to be verified are expressed as LTL formulas, which are nega-

75

Kazimierz Trzęsicki

ted and then converted into Büchi automata as part of the model-checking

algorithm. Spin verifies the model and generates verification results, “true”
or counterexample if the result is “false”. Verification is subdivided into

two aspects: safety and liveness. Some basic safety and liveness properties,
such as deadlock, invalid end state and non-progress cycle are verified. In

addition to model-checking, Spin can also operate as a simulator, following
one possible execution path through the system and presenting the resulting

execution trace to the user.
In Spin, specifications are described using the high-level state-based de-

scription language Promela (Process/ProtocolMeta Language), which is
loosely based on Dijkstra’s guarded command language (Dijkstra 1976). The

language is intended to make it easier to find good abstractions of system
designs. Emphasis in this language is on the modeling of process synchro-

nization and coordination, not on computation. Promela allows for the
expression of non-determinism, asynchronous and synchronous communica-

tion, dynamic process creation, and mobile communications (communica-
tion channels can contain references to other communication channels).

To optimize verification runs, Spin uses efficient partial order reduction
techniques, and also employs statement merging (Holzmann 1999), a spe-

cial case of partial order reduction that merges internal, invisible process
statements to reduce the number of reachable system states. For efficient

state-storage, Spin offers state compression (a form of byte-sharing) or,
alternatively, BDD-like storage techniques based on minimized automata

(Visser & Barringer 1996). In addition, approximate hashing methods are
available, namely, hash-compact methods (Wolper & Leroy 1993) and bit-

state hashing (Holzmann 1998).
Spin generates C sources for a problem-specific model checker. This

technique saves memory and improves performance, while also allowing the
direct insertion of chunks of C code into the model.

Spin reports on deadlocks, unspecified receptions, unexecutable code,
flags incompleteness, race conditions, and unwarranted assumptions about

the relative speeds of processes. The verifier can also be used to verify the
correctness of system invariants, it can find non-progress execution cycles

and acceptance cycles, and it can verify correctness properties expressed in
next-time free linear temporal logic formula.

Spin uses a depth-first search algorithm (breadth-first search is also
possible) and can be used as a full LTL model checking system supporting

all correctness requirements expressible in linear-time temporal logic (or
Büuchi automata, directly). It can also be used as an efficient on-the-fly ve-

rifier for more basic safety and liveness properties (e.g., progress and lack of

76

Temporal Logic Model Checkers as Applied in Computer Science

deadlock), which can often be expressed and verified without the use of LTL.

XSpin is its graphical interface (Holzmann & Peled 1996, Holzmann 1997,
Holzmann 2003).

Spin has been used to trace logical errors in distributed systems de-
signs, such as operating systems (Cattel 1994, Kumar & Li 2002), compu-

ter networks (Yuen & Tloe 2001), and railway signaling systems (Cimatti,
Giunchig lia, Mingardi, Romano, Torielli & Traverso 1997), and for the fe-

ature interaction analysis of telecommunications and email systems (Calder
& Miller 2001, Calder & Miller 2003, Holzmann & Smith 1999b).

Spin is one of the most widely used model checkers and has a fairly
broad group of users in both academia and industry. It is designed for ana-

lyzing the logical consistency of concurrent or distributed asynchronous soft-
ware systems, and is specially focused on proving the correctness of process

interactions. Spin has been used to detect design errors in distributed appli-
cations such as operating systems, data communications protocols, switch-

ing systems, concurrent software, railway signaling protocols, etc., ranging
from high-level abstract descriptions to low-level detailed codes.

Ben-Ari writes about Spin (2008, p. viii):

. . . I found that Spin is a very rare artifact: Although it is an industrial-
strength tool, it can be easily used by students. The software is simple to install
and to run, and models are written in Promela, which looks like a familiar
programming language.

Spin continues to evolve to keep pace with new developments in the
field. The dSpin tool (Iosif & Sisto 1999) is an extension of Spin, which has

been designed for modeling and verifying object-oriented software (Java
programs, in particular). In addition to the usual features available with

Spin, the dSpin model checker allows for the dynamic creation of heap
objects and the representation of garbage collection.

5.1.2. Murφ

Murφ is a system description high-level language and model checker de-
veloped by software engineers to formally evaluate behavioral requirements

for finite-state asynchronous concurrent systems (Dill et al. 1992, Dill 1996).
The Murφ description language was inspired by Misra and Chandy’s

Unity formalism (Chandy & Jayadev 1988).
Murφ is high-level in the sense that many features found in common

high-level programming languages such as Pascal or C are part of Murφ.
AMurφ description consists of a collection of declarations of constants,

data types such as subranges, records, and arrays, global variables, transi-

77

Kazimierz Trzęsicki

tion rules written in a Pascal-like language, which are guarded commands,

a description of the initial states, and a set of invariants. Each transition
rule consists of the followings:

1. a condition (a Boolean expression on the global variables)
2. an action (a statement that can modify the values of the variables).

The Murφ Compiler generates a special purpose verifier from a Murφ
description. This verifier performs a depth- or breadth-first search over the

state-space to check the properties of the system, such as deadlock or asser-
tion or invariance violations. More complex temporal properties cannot be

verified.
An execution of a Murφ program is any sequence of states that can be

generated by starting in one of the states generated by a start rule, then
repeatedly selecting a rule and executing it. Murφ is non-deterministic:

there can be many executions, varying according to which rule was selected
at each step of the execution. As states are generated by the verifier, various

conditions are checked.
The Murφ verifier is appropriate for protocols and finite-state systems

which can reasonably be modeled as a collection of processes that run at
arbitrary speeds, where the steps of the processes interleave (only one pro-

cess takes a step at any time), and where the processes interact by reading
and writing shared variables (asynchronous systems). It has been applied to

several problems, e.g. multiprocessor cache coherence problems, link-level
protocols, a hybrid byzantine agreement algorithm, mutual exclusion algo-

rithms, memory model specifications.
An interesting but quite out-of-date information aboutMurφ is availa-

ble at original Murφ web page: http://sprout.stanford.edu/dill/mur
phi.html. Murφ is developed by prof. Ganesh Gopalakrishnan’s research

group at the University of Utah http://www.cs.utah.edu/formal verifi

cation/.

5.2. Symbolic Model Checkers

5.2.1. Smv

Model checker Smv http://www.cs.cmu.edu/~modelcheck/smv.html

(Symbolic model verifier) accepts both the temporal logics LTL and CTL.
It is the first and the most successful OBDD-based symbolic model checker

(McMillan 1993). Smv has been developed by The Model Checking Group
that is a part of Specification and Verification Center, Carnegie Mellon

University http://www-2.cs.cmu.edu/~modelcheck/index.html.

78

Temporal Logic Model Checkers as Applied in Computer Science

Systems are described using the Smv language, which has been develo-

ped with a precise semantics that relates programs to their expressions as
Boolean formulas.

Smv is aimed at reliable verification of industrially sized designs. It sup-
ports both synchronous and asynchronous communication, and provides for

modular hierarchical descriptions and the definition of reusable components.
Smv has been used to verify various hardware systems, including an avio-

nics triple sensor voter (Danjani-Brown, Cofer, Hartmann & Pratt 2003),
the Gigamax cache coherence protocol (McMillan & Schwalbe 1992) and

the t9000 virtual channel processor (Barrett 1995). The technique has been
applied to several complex industrial systems such as the Futurebus+

and the PCI local bus protocols. Extremely large state-spaces can often be
traversed in minutes.

Cadence Smv http://www.kenmcmil.com/smv.html is a symbolic
model checking tool released by Cadence Berkeley Labs. Cadence Smv

is provided for formal verification of temporal logic properties of finite state
systems, such as computer hardware designs. It is an extension of Smv. It

has a more expressive mode description language, and also supports synthe-
sizable Verilog as a modeling language. Cadence Smv supports a variety

of techniques for compositional verification, allowing it to be applied to large
designs, with user guidance. It allows several forms of specification, including

the temporal logics CTL and LTL, finite automata, embedded assertions,
and refinement specifications. It also includes an easy-to-use graphical user

interface and source level debugging capabilities.
The free research version of Cadence Smv is available.

NuSmv (Cimatti, Clarke, Giunchig lia & Roveri 1999, Cimatti, Clarke,
Giunchig lia, Giunchig lia, Pistore, Roveri, Sebastiani & Tacchella 2002)

http://nusmv.irst.itc.it, http://nusmv.fbk.eu/ is an updated version
of Smv. The additional features contained in NuSmv include a textual in-

teraction shell and graphical interface, extended model partitioning tech-
niques, and facilities for LTL model checking. NuSmv (Cimatti, Clarke,

Giunchig lia & Roveri 2000) has been developed as a joint project between
Formal Methods group in the Automated Reasoning System division at Isti-

tuto Trentino di Cultura, Istituto per la Ricerca Scientifica e Tecnologica
in Trento, Italy), the Model Checking group at Carnegie Mellon Univer-

sity, the Mechanized Reasoning Group at the University of Genoa and the
Mechanized Reasoning Group at the University of Trento.

NuSmv 2 is open source software. It combines BDD-based model check-
ing with SAT-based model checking. It has been designed as an open ar-

chitecture for model checking. NuSmv 2 exploits the CUDD library de-

79

Kazimierz Trzęsicki

veloped by Fabio Somenzi at Colorado University and SAT-based model

checking component that includes an RBC-based Bounded Model Checker,
connected to the SIM SAT library developed by the University of Genova.

It is aimed at reliable verification of industrially sized designs, for use as
a back-end for other verification tools and as a research tool for formal

verification techniques.
An enhanced version of Smv, RuleBase http://www.haifa.ibm.com/

projects/verification/RB Homepage/ (Beer, Ben-David, Eisner & Land-
ver 1996) is an industry-oriented tool for the verification of hardware de-

signs, developed by the IBM Haifa Research Laboratory. In an effort to make
the specification of CTL properties easier for the non-expert, RuleBase

supports its own language, Sugar. In addition,RuleBase supports standard
hardware description languages such as VHDL and Verilog. RuleBase is

especially applicable for verifying the control logic of large hardware designs.
Based on years of experience in practical formal verification, RuleBase

offers this advanced technology to designers and verification engineers and
not only to formal verification experts.

5.2.2. Vereofy

Vereofy http://www.vereofy.de/ was written by Prof. Christel Ba-
ier at Technische Universität Dresden. It is developed in the context of the

EU project CREDO. Vereofy is a formal verification tool of checking of
component-based systems for operational correctness.

It uses two input languages: a scripting language called RSL (Reo
Scripting Language), and a guarded command language, called CARML

(Constraint Automata Reactive Module Language). RSL and CARML
are equally powerful and rely on the same semantic model. However, due to

the nature of RSL and CARML, in most cases a hybrid approach, where
CARML is used to provide the interface specifications of components and

RSL for specifying the network is preferable.
Vereofy allows for linear and branching time model checking. To tac-

kle the state space explosion problem, Vereofy generates an internal sym-
bolic representation of the constraint automata for components, the net-

work, and finally the composite system.
The model checker can be used as a stand-alone tool or via a graphi-

cal user interface (the Reo GUI developed at the Centrum Wiskunde &
Informatica, Amsterdam as a part of the Eclipse Coordination Tools) as

a plug-in.

80

Temporal Logic Model Checkers as Applied in Computer Science

5.3. Real-Time Model Checkers

Model checking tools were initially developed to reason about the logical
correctness of discrete state systems, but have since been extended to deal

with real-time and limited forms of hybrid systems.
When modeling certain critical systems, it is essential to include

some notion of time. If time is considered to increase in discrete steps
(discrete-time), then existing model checkers can be readily extended (Alur

& Henzinger 1992, Emerson 1992). Real-time systems are systems that must
perform a task within strict time deadlines. Embedded controllers, circuits

and communication protocols are examples of such time-dependent systems.
Real-time systems need to be rigorously modeled and specified in order to

be able to formally prove their correctness with respect to the desired re-
quirements. A real-time extension to Cospan (Alur & Kurshan 1995, Alur

& Kurshan 1996) allows real-time constraints to be expressed by associa-
ting lower and upper bounds on the time spent by a process in a local state.

An execution is said to be timing-consistent if its steps can be assigned
real-valued time-stamps that satisfy all the specified bounds.

The hybrid model checker HyTech (Henzinger, Ho & Wong-Toi 1997)
is used to analyze dynamical systems whose behavior exhibits both discrete

and continuous change. HyTech automatically computes the conditions
on the parameters under which the system satisfies its safety and timing

requirements.

5.3.1. Uppaal

The most widely used dense real-time model checker (in which time

is viewed as increasing continuously) is Uppaal http://www.uppaal.com/
(Larson, Pettersson & Yi 1997). Models are expressed as timed automata

(Alur & Dill 1993) and properties defined in Uppaal logic, a subset of Ti-
med Computational Tree Logic (TCTL) (Alur, Courcoubetis & Dill 1990).

Uppaal uses a combination of on-the-fly and symbolic techniques (Larson,
Pettersson & Yi 1995, Yi, Pettersson & Daniels 1994), so as to reduce the

verification problem to that of manipulating and solving simple constraints.
Uppaal is a tool suite for validation and verification of real-time systems mo-

deled as networks of timed automata extended with data variables. Uppaal
consists of three main parts: a graphical user interface, a simulator and

a model-checker engine. Modeling can be done in the graphical user inter-
face. The simulator is helpful when debugging design errors because it can

run interactively to check whether the system works as intended and gene-
rate traces. The verifier checks for simple invariants and reachability proper-

ties for efficiency reasons. Other properties may be checked by using test au-

81

Kazimierz Trzęsicki

tomata or systems decorated with debugging information (Larsen, Petters-

son & Yi 1997). Uppaal implements the forward search algorithm in which
the state space is explored in a breadth-first manner. It also uses on-the-fly

verification combined with a symbolic technique, reducing the verification
problem to that of solving simple constraints systems. The computation

of clock constraints is aided with the data structure known as Difference
Bound Matrices (Dsms) (Bengtsson & Yi 2004). The non-convex zones

are stored and manipulated in the data structure called Clock Difference
Diagrams (Cdds) (Behrmann, Larsen, Pearson, Weise & Yi 1999).

Uppaal is an integrated tool environment for modeling, validation and
verification of real-time systems modeled as networks of timed automata,

extended with data types (bounded integers, arrays, etc.). The tool is deve-
loped in collaboration between the Department of Information Technology

at Uppsala University, Sweden and the Department of Computer Science at
Aalborg University in Denmark.

5.3.2. Kronos

Another real-time model checker is Kronos http://www-verimag.

imag.fr/TEMPORISE/kronos/ (Yovine 1997). Kronos is developed by Ser-

gio Yovine at VERIMAG, a leading research center in embedded systems
in France. Kronos checks whether a real-time system modeled by a timed

automaton satisfies a timing property specified by a formula of the Timed
Computational Tree Logic TCTL, a timed extension of CTL. Kronos

implements a symbolic model-checking algorithm, where sets of states are
symbolically represented by linear constraints over the clocks of the timed

automaton. The correctness requirements are expressed in the real-time
temporal logic TCTL.

Kronos is a tool developed with the aim to assist the user to validate
complex real-time systems and is used to analyze systems modeled in several

timed process description formalisms, such as Atp (Nicollin & Sifakis 1994)
and ET-Lotos (L’eonrad & Leduc 1997, L’eonrad & Leduc 1998). Krons

is a tool which implements a model checking algorithm for the TCTL (Alur,
Courcoubetis & Dill 1993, Clarke et al. 1999, Huth & Ryan 2004).

Kronos implements both the forward and backward algorithms (Daws
& Yovine 1995). It allows one to express and verify not only reachability

properties but liveness properties as well. The system is modeled as a set of
concurrently operating timed automata.

Kronos supports verification based on both the region and simulation
graphs (Bouajjani et al. 1997). Kronos has been used to verify real-time

systems including the classical CSMA/CD protocol.

82

Temporal Logic Model Checkers as Applied in Computer Science

To improve the exploration of the state space, Kronos also implements

an on-the-fly technique. In this approach, a symbolic graph called a simu-
lation graph is constructed. The computation of clock constraints is also

aided with the DBM data structure.
Kronos checks whether a timed automaton satisfies a TCTL-formula.

The model-checking algorithm is based upon a symbolic representation of
the infinite state space by sets of linear constraints.

Since Kronos works on timed automata, potentially many more func-
tionalities can be checked compared to Spin.

Kronos is freely distributed through the web for academic non-profit
use.

5.3.3. STeP

Stanford Temporal Prover, STeP http://www-step.stanford.edu/,
STeP, is developed at Stanford University by the REACT research

group (National Science Foundation, Grant No. 9804100) (Manna, Bjørner,
Browne, Chang, Alfaro, Devarajan, Kapur, Lee & Sipma 1994, Bjørner,

Browne, Chang, Colón, Kapur, Manna, Sipma & Uribe 1996).
STeP is a system for reasoning about reactive, real-time and hybrid

systems based on their temporal specification.
Unlike most systems for temporal verification, STeP is not restricted to

finite-state systems, but combines model checking with deductive methods
(Sipma, Uribe & Manna 1996) to allow the verification of a broad class of

systems, including parameterized (N -component) circuit designs, parame-
terized (N -process) programs, and programs with infinite data domains.

STeP is being extended with modular verification diagrams (Browne,
Manna & Sipma 1996).

STeP integrates model-checking and theorem-proving methods for pro-
ving that a temporal logic formula φ is valid for a program P. The model
checker is based on the construction of the product automaton for P and
¬φ and checking the emptiness of its language.
An educational version of the system, which accompanies the textbook

(Manna & A. Pnueli 1995b), is available: step-request@cs.stanford.edu.

5.4. Tools of direct model checking

Model checking requires the manual construction of a model, via a mo-

deling language, which is then converted to a Kripke structure or an auto-
maton for model checking. Model checking starts with translation to model

checker language. Structures have to be “described” in this language. Since

83

Kazimierz Trzęsicki

1980 through mid 1990s, it was a hand-translation with ad-hoc abstrac-

tions. Semi-automated, table-driven translations begin in 1998. Automated
translations still with ad hoc abstractions are characteristic for the period

1997–1999. State-less model checking for C VeriSoft has been applied
in 1997.

In model checking considerable gains can be made by finding ways to
extract models directly from program source code. There have been several

promising attempts to do so.
Model checking may be applied directly to program source code writ-

ten in languages such as Java or C. Early approaches to model chec-
king Java software, like JCAT (Demartini, Iosif & Sisto 1999) and Java

PathFinder (JPF1) (Havelund & Pressburger 2000), involved the direct
translation of Java code into Promela, and subsequent verification via

Spin. Although both of these systems were successful, direct translation
meant that programs were only able to contain features that were suppor-

ted by both Java and Promela (this is not true for floating point num-
bers, for example). The Bandera http://santos.cis.ksu.edu/bandera/

tool (Corbett, Dwyer, Hatcliff, Laubach, Pǎsrǎeanu, Robby & Zheng 2000)
avoids direct translation, instead by extracting an abstracted finite-state

model from Java source code. This model is then translated into a suita-
ble modeling language (Promela or Smv) and model checked accordin-

gly. Meanwhile, a second-generation of the Java PathFinder tool (JPF2)
(Visser, Havelund, Brat & Park 2000), which makes extensive use of Ban-

dera abstraction tools, has been developed to model check Java byte code
directly.

5.4.1. VeriSoft

VeriSoft http://cm.bell-labs.com/who/god/verisoft/ is the first
model checker that could handle programs directly. It relies on partial-order

reductions to limit the number of times a state is revisited.
VeriSoft is a tool for Systematic Software Testing.

• Customers. VeriSoft is a tool for software developers and testers of
concurrent/reactive/real-time systems.

• Description. VeriSoft automatically searches for coordination pro-
blems (deadlocks, etc.) and assertion violations in a software system

by generating, controlling, and observing the possible executions and
interactions of all its components. It integrates automatic test genera-

tion, execution and evaluation in a single framework. VeriSoft inclu-
des an interactive graphical simulator that can drive existing debuggers

for examining precisely the concurrent execution of multiple processes.

84

Temporal Logic Model Checkers as Applied in Computer Science

• Benefits. VeriSoft can quickly reveal behaviors that are virtually im-
possible to detect using conventional testing techniques, and hence re-
duces the cost of testing and debugging, while increasing reliability.

• Scope. VeriSoft can test software applications developed in any lan-
guage (C, C++, Tcl, etc.). VeriSoft is optimized for analyzing

multi-process applications. It can analyze systems composed of pro-
cesses described by hundreds of thousands of lines of code. Source code

for all the components is not required.
• Technology. The key technology used in VeriSoft is a new form of
systematic state-space exploration (also called “model checking” in the
research literature). With its first prototype developed in 1996 and its

design first presented at POPL’97, VeriSoft is the first software mo-
del checker using a run-time scheduler for systematically driving the

executions of an application through its state space.
The VeriSoft model checker (Godefroid 1997) is used to verify con-

current processes executing C code. Unlike traditional model checking tech-
niques, the use of VeriSoft does not rely on states being expressed as

sequences of bits. Systematic search of the state-space allows the user to
check for deadlock and assertion violations, as well as for timeouts and live

locks. A stateless search is used, whereby only states along the current path
are stored, together with as many states as possible in the remaining avail-

able memory. As a result, state-space explosion is not a problem – it is
theoretically possible to verify systems of any size. However, as as result,

the same path may be explored many times, and so the search can be very
slow.

5.4.2. Java PathFinder

On the home page of Java PathFinder (Jpf) http://javapathfinder.
sourceforge.net/ we read that it is a system to verify executable Java

bytecode programs. In its basic form, it is a Java Virtual Machine that is
used as an explicit state software model checker, systematically exploring

all potential execution paths of a program to find violations of properties
like deadlocks or unhandled exceptions. Unlike traditional debuggers, Jpf

reports the entire execution path that leads to a defect. Jpf is especially
well-suited to finding hard-to-test concurrency defects in multithreaded pro-

grams. Jpf integrates model checking, program analysis and testing.
While software model checking in theory sounds like a safe and robust

verification method, reality shows that it does not scale well. To make it
practical, a model checker has to employ flexible heuristics and state abs-

tractions. Jpf is unique in terms of its configurability and extensibility, and

85

Kazimierz Trzęsicki

hence is a good platform to explore new ways to improve scalability. Jpf

uses state compression to handle big states, and partial order and symme-
try reduction, slicing, abstraction, and runtime analysis techniques to reduce

the state space.
Jpf is a pure Java application that can be run either as a standalone

command line tool, or embedded into systems like development environ-
ments. It was mostly developed – and is still used – at the NASA Ames

Research Center. Started in 1999 as a feasibility study for software model
checking, Jpf has found its way into academia and industry, and has even

helped detect defects in real spacecraft.

5.4.3. Bogor

http://bogor.projects.cis.ksu.edu/ is the address of the Bogor-

Website-Home. Bogor is an extensible software model checking framework
with state of the art software model checking algorithms, visualizations, and

user interface designed to support both general purpose and domain-specific
software model checking. Although there are many model checkers avail-

able, Bogor provides a number novel capabilities that make it especially
well-suited for checking properties of a variety modern software artifacts, for

building your own domain-specific engine, and for using it to teach model
checking concepts.

• Direct support of features found concurrent object-oriented languages
such as dynamic creation of threads and objects, object inheritance,

virtual methods, exceptions, garbage collection, etc.
• Bogor’s modeling language can be extended with new primitive types,
expressions, and commands associated with a particular domain (e.g,
multi-agent systems, avionics, security protocols, etc.) and a particular

level of abstraction (e.g., design models, source code, byte code, etc.).
• Bogor’s open architecture well-organized module facility allows new al-
gorithms (e.g., for state-space exploration, state storage, etc) and new
optimizations (e.g., heuristic search strategies, domain-specific schedu-

ling, etc.) to be easily swapped in to replace Bogor’s default model
checking algorithms.

• Bogor has a robust feature-rich graphical interface implemented as
a plug-in for Eclipse – an open source and extensible universal tool

platform from IBM. This user interface provides mechanisms for collec-
ting and naming different Bogor configurations, specification property

collections, and a variety of visualization and navigation facilities.
• Bogor is an excellent pedagogical vehicle for teaching foundations and
applications of model checking because it allows students to see clean

86

Temporal Logic Model Checkers as Applied in Computer Science

implementations of basic model checking algorithms and to easily en-

hance and extend these algorithms in course projects (read more and
see available course materials).

In short, Bogor aims to be not only a robust and feature-rich software
model checking tool that handles the language constructs found in modern

large-scale software system designs and implementations, it also aims to
be a model checking framework that enables researchers and engineers to

create families of domain-specific model checking engines.
The Bogor model checking framework (Robby & Hatcliff 2003) is used

to check sequential and concurrent programs. The behavioral aspects of the
program are first specified in Java modeling language, which, together with

the original Java program, is then translated into a lower-level specification
for verification. Bogor exploits the canonical heap representation of dSpin

and is implemented as an Eclipse (Clayberg & Rubel 2004) plug-in.

5.4.4. Blast

For the direct model checking for C programs there are various tools

available, e.g. Blast (Berkeley Lazy Abstraction Software verification
Tool) http://mtc.epfl.ch/software-tools/blast/, http://www.sosy-

lab.org/~dbeyer/blast doc/blast001.html, http://www.sosy-lab.org
/~dbeyer/blast doc/blast.pdf (Henzinger, Jhala, Majumdar & Sutre

2003). The first version of Blast was developed for checking safety pro-
perties in C programs at University of California, Berkeley by Ranjit Jhala,

Rupak Majumdar, and Gregoire Sutre. The Blast project is supported
by the National Science Foundation. The task addressed by Blast is the

need to check whether a system satisfies the behavioral requirements of its
associated interfaces.

Blast employs CEGAR59 framework to construct an abstract model
that is then model-checked. The abstraction is constructed on-the-fly, and

only to the requested precision. The refinement is applied locally, i.e., it uses
lazy abstraction to reduce unnecessary abstraction refinement.

The Blast specification language has a very C-like syntax. This makes
it easier to learn, especially for C programmers, compared to learning a new

specification language. The specification essentially looks for certain pat-
terns in the original program and inserts some checks and actions to be

performed when these patterns are matched. Blast claims to handle all
syntactic constructs of C, including pointers, structures, and procedures.

59 See p. 60.

87

Kazimierz Trzęsicki

Blast uses Simplify (Detlefs, Nelson & Saxe 2003, Detlefs, Nelson

& Saxe 2005) and Vampyre http://www.cs.ucla.edu/~rupak/Vampyre/
as theorem provers.

Blast is a popular software model checker for revealing errors in Linux
kernel code.

Blast is relatively independent of the underlying machine and ope-
rating system. Blast is free software, released under the Modified BSD

license http://www.oss-watch.ac.uk/resources/modbsd.xml. It is targe-
ted at the general programmers in the software industry. In order to en-

courage programmers to use Blast for verification, an eclipse plug-in has
been developed for Blast.

Blast is based on similar concepts as Slam. Blast and Slam are
relatively new. Slam was developed by Microsoft Research around 2000,

i.e., earlier than Blast, which was developed around 2002. Both checkers
have many characteristics in common.

5.4.5. Slam

Slam http://research.microsoft.com/en-us/projects/slam/ was
originally developed to check C programs (system software) for temporal

safety properties. These properties remain its main goal. Slam is a project
developed by Microsoft Research for addressing critical behavioral proper-

ties of the interfaces it uses and to aid software engineers in designing inter-
faces and software that ensure reliable and correct functioning. The main

application domain is device drivers in Windows.
Slam has been customized for the Windows product Static Driver

Verifier, Sdv, a tool in the Windows Driver Development Kit. Sdv uses
the Slam verification engine to analyze the source code of Windows device

drivers (Ball, Cook, Levin & Rajamani 2004). Sdv involves a similar abs-
traction, verification, and refinement loop to that of Blast and exploits the

Bebop model checker during the verification stage.
The specification language used for Slam is Slic (Specification Lan-

guage for Interface Checking). The concept behind Slam has been used
for a tool called Beacon (Ball, Chaki & Rajamani 2001), which checks for

interface usage rules in multithreaded software libraries.
Slam and Blast work on a C program and take the specification of the

property to be checked as its input. With respect to the specification langu-
age, Blast has an advantage over Slam. Slic does not support type-state

properties. It monitors only function calls and returns and so, is limited to
the specification of interfaces.

Slam and Blast either verify that the system is safe, i.e. the program

88

Temporal Logic Model Checkers as Applied in Computer Science

satisfies the specified property or give an error trace that violates that pro-

perty. Slam is comparable to Blast in scalability and precision. Both Slam
and Blast perform static analysis and use CEGAR paradigm to extract

a finite state model from the C program. Both tools handle C language
constructs (like pointers, structures, and procedures) and assume a logical

model of the memory.
One key difference between Slam and Blast is the use of lazy abstrac-

tion in Blast.
Slam and Blast differ from other model checking tools in many ways.

First of all, the traditional approach to model-checking (followed by Spin
and Kronos) has been to first create a model of a system, and once the

model has been verified, move on to the actual implementation. Slam and
Blast fall in the category of the “modern” approach in model checking.

The user has already completed the implementation and wishes to verify
the software. The objective then is to create a model from the existing pro-

gram and apply model checking principles, such that the original program
is verified.

Slam and Blast are used for checking safety properties only, whereas
Spin is more developed and also checks liveness properties.

5.4.6. Chic

Checker for InterfaceCompatibility Chic http://www.eecs.berkeley.
edu/~arindam/chic/ (de Alfaro & Henzinger 2001) is a modular verifier

for behavioral compatibility checking of hardware and software systems.
The goal of Chic is to be able to check that the interfaces for software

or hardware components provide guarantees that satisfy the assumptions
they make about each other. Chic supports a variety of interface pro-
perty specification formalisms for a variety of application domains, such

as resource-usage analysis for embedded systems, behavioral compatibility
of web service applications, etc.

Chic is a modular verifier for behavioral compatibility checking of soft-
ware and hardware components. The goal of Chic is to be able to check

that the interfaces for software or hardware components provide guarantees
that satisfy the assumptions they make about each other. Chic supports

a variety of interface property specification formalisms.

5.4.7. Chess

Chess http://research.microsoft.com/en-us/projects/CHESS/mo-

del checker is a software model checker for finding and reproducing Hei-

89

Kazimierz Trzęsicki

senbugs60 in multithreaded software by systematic exploration of thread

schedules. It finds errors, such as data-races, deadlocks, livelocks, and
data-corruption induced access violations, that are extremely hard to find

with other testing tools. Chess can be used for testing concurrent software,
as an alternative to stress testing.

Once Chess locates an error, it provides a fully repeatable execution of
the program leading to the error, thus greatly aiding the debugging process.

Chess is available for both managed and native programs.

5.4.8. FeaVer

The FeaVer (Feature Verification system) http://cm.bell-labs.

com/cm/cs/what/feaver/ tool grew out of an attempt to come up with
a thorough method to check the call processing software for a commer-

cial switching product, called the PathStarr access server (Holzmann
& Smith 1999b, Holzmann 2002). It allows models to be extracted mecha-

nically from the source of software applications, and checked using Spin.
Spin allows C code to be embedded directly within a Promela specifica-

tion (Holzmann & Smith 1999a, Holzmann & Smith 2002).
In the application of FeaVer, abstraction functions are recorded in

a lookup table that acts as a filter for the source code. Abstraction is only
applied to basic statements and conditionals; the control-flow structure of

the source code is preserved. To apply the abstraction and generate the
system model, the source code is first parsed, with a standard compiler

frontend.

5.4.9. Time Rover

The Time Rover http://www.time-rover.com/ is a specification based

verification tool for applications written in C, C++, Java, Verilog and
VHDL. The tool combines formal specification, using LTL andMTL, with

conventional simulation/execution based testing. The Temporal Rover is tai-
lored for the verification of complex protocols and reactive systems where

behavior is time dependent. The Temporal Rover generates executable code
from LTL and MTL assertions written as comments in the source code.

This executable source code is compiled and linked as part of the application
under test. During application execution the generated code validates the

executing program against the formal temporal specification requirements.
UsingMTL, real time and relative time constraints can be validated. A spe-

60 It is a bug that disappears or alters its characteristics when an attempt is made to
study it. Named after the Heisenberg Uncertainty Principle.

90

Temporal Logic Model Checkers as Applied in Computer Science

cial code generator support s validation of such constraints in the field, on

an embedded target.
On the website http://www.time-rover.com/company.html we read:

Time Rover Software specializes in the entire validation and verification pro-
cess for safety critical software. We provide both experts and tools that will
help your team to:
• create the right product (validation).
• create the product right (verification).
Our methodology and technology are based on the Unified Modeling Language
(UML) and are currently in active use by NASA IV and V center and the
national Missile Defense development team.

5.5 Probabilistic model checker

Since Pnueli introduced temporal logic to computer science, logic has

been extended in various ways to include probability. Probabilistic techni-
ques have proved successful in the specification and verification of systems

that exhibit uncertainty. The behavior of many real-life processes is in-
herently stochastic. Probability is an important component in the design

and analysis of complex systems across a broad spectrum of application
domains, including communication and multimedia protocols, randomized

distributed algorithms, security protocols, dynamic power management and
biological systems. This leads to the study of probabilistic model checking of

probabilistic models based on Markov chains61 or Markov decision proces-
ses. This formal tool provides efficient and rigorous methods for evaluating

a wide range of properties, from performance and reliability to security and
anonymity.

Whereas model-checking techniques focus on the absolute guarantee of correct-
ness – “it is impossible that the system fails” – in practice such rigid notions
are hard, or even impossible, to guarantee. Instead, systems are subject to
various phenomena of a stochastic nature, such as message loss or garbling
and the like, and correctness – “with 99% chance the system will not fail” –
is becoming less absolute. (Baier & Katoen 2008, p. 745).

Probabilistic aspects are essential for, among others:

• Randomized algorithms.
• Modeling unreliable and unpredictable system behavior.
• Model-based performance evaluation.

61 The basic concepts of continuous-time Markov chains were introduced by Mar-
kov (1907) for state spaces and Kolmogorov (1936) for denumerable and continuous spaces.

91

Kazimierz Trzęsicki

5.5.1. Model Checking Probabilistic Systems

Probabilistic model checking concerns verification of probabilistic sys-
tems. Randomization is frequently used in real-world distributed coordi-

nation protocols, fault-tolerant algorithms and in adaptive schemes. Early
work has concentrated on discrete-time models. Formal verification based on

temporal logic has been successfully extended to the verification problems
of probabilistic systems. In order to model random phenomena, transition

systems are enriched with probabilities. The transitions between states are
labeled with information about the likelihood that they will occur. As in the

non-probabilistic case, the principal challenge when developing probabilistic
model checker is to overcome the state explosion problem.

The verification of probabilistic systems can be focused on either quan-
titative properties or qualitative properties (or both).

Quantitative properties typically put constraints on the probability
or expectation of certain events. Instances of quantitative properties are,

e.g., the requirement that the probability for delivering a message within
the next t time units is at least 0.98, or that the expected number of unsuc-

cessful attempts to find a leader in a concurrent system is at most seven.
Qualitative properties, on the other hand, typically assert that a certain

(good) event will happen almost surely, i.e., with probability 1, or dually,
that a certain (bad) event almost never occurs, i.e., with 0 probability.

That is, qualitative properties arise as a special case of quantitative pro-
perties where the probability bounds are the trivial bounds 0 or 1. Typical

qualitative properties for Markov models are reachability, persistence (does
eventually an event always hold?), and repeated reachability (can certain

states be repeatedly reached?) (Baier & Katoen 2008, p. 746).
Early works in this field were focusing on the verification of quali-

tative properties. These included work of (Courcoubetis & M. Yannaka-
kis 1988) which considered models of two types, Discrete-Time Markov

Chains (Dtmcs) and Markov Decision Processes (Mdps).
The verification of quantitative properties is more involved than that of

qualitative properties. Typical qualitative properties require that the pro-
bability of reaching a bad state is 0, or dually, that a certain desired system

behavior appears with probability 1 whereas in the case of the quantitative
properties the exact probability has to be computed for a given property

in addition to the satisfaction of that property. In the work of (Hansson
& Jonsson 1994), the Probabilistic Computation Tree Logic (PCTL) was

introduced for the verification of Dtmcs. The verification of quantitative
properties for Mdps was considered in (Courcoubetis & Yannakakis 1990,

Bianco & Alfaro 1995, Baier & Kwiatkowska 1998).

92

Temporal Logic Model Checkers as Applied in Computer Science

Methods to verify Dtmca or Mdps against a linear-time have been

considered, e.g., (Courcoubetis & Yannakakis 1995, Pnueli & Zuck 1993,
Vardi 1985). Probabilistic branching time logic model checking is studied

in, e.g., (Hansson & Jonsson 1994, Aziz, Singhal & Balarin 1995, Baier
& Kwiatkowska 1998, Bianco & De Alfaro 1995).

Tools concerning model checking probabilistic systems such as Prism
(PRobabilistic Symbolic Model Checker) http://www.cs.bham.ac.uk/

~dxp/prism/, (Kwiatkowska, Norman & Parker 2001, Kwiatkowska, Nor-
man & Parker 2002b, Kwiatkowska, Norman & Parker 2002a) have been

developed and applied to several real-world case studies. Other tools include
Etmcc (Hermanns, Katoen, Meyer-Kayser & Siegle 2000), Caspa (Kuntz,

Siegle & Werner 2004) and Mrmc (Markov RewardModel Checker) (Ka-
toen, Khattri & Zapreev 2005).

5.5.2. Etmcc

Probabilistic Model Checker Etmcc (Erlangen-TwenteMarkov Chain
Checker) (Hermanns et al. 2000) is developed jointly by the Stochastic

Modeling and Verification group at the University of Erlangen-Nürnberg,
Germany, and the Formal Methods group at the University of Twente,

the Netherlands. Etmcc is the first implementation of a model checker
for Discrete-Time Markov Chains (Dtms) and Continuous-Time Markov

Chains (Ctmcs). It uses numerical methods to model check PCTL (Hans-
son & Jonsson 1994) and Continuous Stochastic Logic (CSL)62 formulas

respectively for Dtmcs and Ctmcs. The current version of Etmcc comes
along with an experimental model checking engine supporting verification

techniques to check action based CSL (aCSL) (Vaandrager F. W. and
De Nicola 1990) requirements against action-labeled continuous time Mar-

kov chains.

5.5.3. Markov Reward Model Checker

Markov RewardModel Checker (Mrmc) http://www.mrmc-tool.org

/trac/ has been developed by the Formal Methods & Tools group at the
University of Twente, The Netherlands and the Software Modeling and Veri-

fication group at RWTH Aachen University, Germany under the guidance of
Joost-Pieter Katoen (Baier & Katoen 2008, Ch. 10 Probabilistic systems).

Mrmc is a successor of Etmcc, which is a prototype implementation of
a model checker for continuous-time Markov chains.

62 A branching-time temporal logic a’la CTL with state and path formulas (Aziz,
Sanwal, Singhal & Brayton 1996, Baier, Katoen & Hermanns 1999, Aziz, Sanwal, Singhal
& Brayton 2000).

93

Kazimierz Trzęsicki

Mrmc is a tool (back-end) for performing model checking on Markov

reward models, i.e. it is a model checker for:
• Discrete time Markov chains,
• Continuous time Markov chains,
• Discrete time Markov Reward models,
• Continuous time Markov Reward models,
• Continuous time Markov decision processes.
The tool supports verification of:
• Probabilistic Computation Tree Logic,
• Continuous Stochastic Logic,
• Probabilistic Reward Computation Tree Logic,
• Continuous Stochastic Reward Logic.
Mrmc allows for for the automated verification of properties concern-

ing long-run and instantaneous rewards as well as cumulative rewards. It
supports:

• Numerical model checking on all types of input models,
• Model checking by Discrete Event Simulation on CTMCs,
• Formula-dependent and formula-independent bisimulation.
Mrmc is a command-line tool, written in C. It is available for:

• Windows,
• Linux, and

• Mac OS X

platforms. The tool is distributed under the GNU Public License.

5.5.4. Prism

Prism stands for Probabilistic Symbolic Model Checker http://www.
prismmodelchecker.org/. It is the internationally leading probabilistic

model checker being implemented at the University of Birmingham (Kwiat-
kowska et al. 2001, Kwiatkowska et al. 2002), http://www.cs.bham.ac.uk/

~dxp/prism/. First public release: September 2001.
There are three types of probabilistic models that Prism can support

directly: Discrete-TimeMarkov Chains (Dtmcs), Markov decision proces-
ses (Mdps) and Continuous-TimeMarkov Chains (Ctmcs).

Prism (Kwiatkowska et al. 2002, Rutten, Kwiatkowska, Norman & Par-
ker 2004) allows time to be considered as increasing either in discrete

steps or continuously. Models are expressed in Prism own modeling lan-
guage and converted to a variant of the Markov chain (either discrete- or

continuous-time). Properties are written in terms of PCTL or CSL, respec-
tively. Models can also be expressed using Pepa (Performance Evaluation

Process Algebra) (Hillston 1996) and converted to Prism.

94

Temporal Logic Model Checkers as Applied in Computer Science

The user interface and parsers are written in Java; the core algorithms

are mostly implemented in C + +. For state space representation, Prism
uses a modified version of the CUDD package (Somenzi 1997).

Prism offers a choice between three engines: one symbolic using
Mtbdds (Multi-Terminal BinaryDecision Diagrams); one based on sparse

matrix techniques; and one hybrid engine PrismH which combines both
symbolic and sparse approaches. It is expected that Prism is faster, whe-

reas PrismH consumes less memory.
The current version of Prism is 3.2 (first released 15 Jun 2008). Notable

improvements and additions since the last main release (3.1.1) include:
• Support for 64-bit architectures and Mac OS X v10.5 (Leopard)
• Additions to property specification language
• Redesign of the simulator GUI
• New graph plotting engine using JFreeChart
• Prototype SBML-to-Prism translator

• Extra reward model checking algorithms for some engines
Prism has been used to analyze several real-world case studies http://

www.cs.bham.ac.uk/~dxp/prism/. Prism enables quantitative analysis of
properties such as expected time, average power consumption, and pro-

bability of delivery by deadline. It can be used to analyze systems from
a wide range of application domains, including communication and mul-

timedia protocols, randomized distributed algorithms, security protocols,
biological systems and many others. In particular, it has been used to mo-

del and analyze over 30 real-world protocols, which included anonymity
protocols for the Internet, Bluetooth device discovery, dynamic power ma-

nagement, nanotechnology designs and biochemical reactions. For example,
it was discovered with Prism that the Crowds anonymity protocol does not

in fact guarantee anonymity, and that the worst case time to hear one mes-
sage during Bluetooth device discovery is 2.5 seconds. Prism was also used

to analyze the IEEE 1394 FireWire root contention protocol, a rando-
mized leader election protocol which uses an electronic coin. Analysis with

Prism confirmed that a biased coin gives an advantage.
Prism is free and open source, released under the GNU General Public

License (GPL), available freely for research an teaching. There are 16459
downloads of Prism to date.

5.5.5. Apmc

Apmc,Approximate ProbabilisticModel Checker http://apmc.berbi
qui.org/index.php/Accueil is an approximate distributed model checker

for fully probabilistic systems. Apmc uses a randomized algorithm to appro-

95

Kazimierz Trzęsicki

ximate the probability that a temporal formula is true, by using sampling of

execution paths of the system. Apmc uses a distributed computation model
to distribute path generation and formula verification on a cluster of work-

stations. The implementation of the tool started in 2003 and was originally
done using C programming language together with lex and yacc. Apmc

was rewritten recently in Java for its version 3.0.
Publications concerningApmc are available at: http://apmc.berbiqui.

org/index.php/Publications.

6. Conclusions

Since the early nineties of the last century when in the verification of

finite state systems the breakthrough was achieved to present time, a success
story of modern computer science was written. Formal methods of ICT , in

particular methods of model checking are still developing. The old ones are
still improved to be more efficient and more flexible. The plenitude of new

ones reveals the potentiality of formal methods of ICT systems verification.
Due to human ingenuity, in formal methods as well as in technology, the

potentiality of automatic formal verification increased enormously, but the
horizon is still ahead of us, there is so much more and there will always

be, since there are still more advanced and more complicated ICT systems
conceived that need to be verified.

References

Akers, S. (1978), ‘Binary decision diagrams’, IEEE Transactions on Com-
puters C-27(6), 509–516.

Allen, J. F. (1984), ‘Towards a general theory of action and time’, Artificial
Intelligence 23, 123–154.

Allen, J. F. (1985), ‘Charles hamblin (1922–1985)’, The Australian Compu-

ter Journal 17, 194–195.

Alur, R., Courcoubetis, C. & Dill, D. L. (1990), Model-checking for real-time

systems, in ‘Proceedings of the 5th Annual IEEE Symposium on Logic
in Computer Science’, IEEE Computer Society Press, Philadelphia,

PA, pp. 414–425.

96

Temporal Logic Model Checkers as Applied in Computer Science

Alur, R., Courcoubetis, C. & Dill, D. L. (1993), ‘Model-checking in dense

real-time’, Information and Computation 104(1), 2–34.

Alur, R. & Dill, D. (1993), ‘A theory of timed automata’, Inf. Comput.
194, 2–34.

Alur, R. & Dill, D. L. (1994), ‘A theory of timed automata’, Theoretical
Computer Science 126(2), 183–235.

Alur, R., Feder, T. & Henzinger, T. A. (1991), The benefits of relaxing
punctuality, in ‘Symposium on Principles of Distributed Computing’,

pp. 139–152.

Alur, R. & Henzinger, T. (1992), Logics and models of real time: A survey,

in I. W. de Bakker et al., ed., ‘Proceedings of the REX Workshop on
Real-Time: Theory and Practice’, Vol. 600 of Lecture Notes in Com-

puter Science, Springer-Verlag, Mook, the Netherlands, pp. 74–106.

Alur, R. & Kurshan, R. (1995), Timing analysis in Cospan, in R. A. et al.,

ed., ‘Proceedings of the 3rd DIMACS/SYCON Workshop on Hybrid
Systems: Verification and Control’, Vol. 1066 of Lecture Notes in Com-

puter Science, Springer-Verlag, New Brunswick, NJ, pp. 220–231.

Alur, R. & Kurshan, P. (1996), Timing analysis in Cospan, in ‘Hybrid

System-III, Control and Verification’, Vol. 1066 of Lecture Notes in
Computer Science, Springer Verlag, pp. 220–231.

Aziz, A., Sanwal, K., Singhal, V. & Brayton, R. (2000), ‘Model checking
continuous time Markov chains’, ACM Trans. Computational Logic

1(1), 162–170.

Aziz, A., Sanwal, K., Singhal, V. & Brayton, R. K. (1996), Verifying conti-
nuous time Markov chains, in R. Alur & T. A. Henzinger, eds, ‘Eighth

International Conference on Computer Aided Verification CAV 1996’,
Vol. 1102 of Lecture Notes in Computer Science, Springer Verlag, New

Brunswick, NJ, USA, pp. 269–276.

Aziz, A., Singhal, V. & Balarin, F. (1995), It usually works: The temporal

logic of stochastic systems, in ‘Proceedings of the 7th International
Conference on Computer Aided Verification’, Springer-Verlag, Lon-

don, UK, pp. 155–165.

Baier, C. & Katoen, J.-P. (2008), Principles of Model Checking, The MIT

Press. Foreword by Kim Guldstrand Larsen.

97

Kazimierz Trzęsicki

Baier, C., Katoen, J.-P. & Hermanns, H. (1999), Approximate symbolic

model checking of continuous-time Markov chains, in ‘International
Conference on Concurrency Theory’, pp. 146–161.

Baier, C. & Kwiatkowska, M. (1998), ‘Model checking for a probabi-

listic branching time logic with fairness’, Distributed Computing
11(3), 125–155.

Ball, T., Chaki, S. & Rajamani, S. K. (2001), Parameterized verification
of multithreaded software libraries, in ‘TACAS 2001: Proceedings of

the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems’, Springer-Verlag, London, UK,

pp. 158–173.

Ball, T., Cook, B., Levin, V. & Rajamani, K. (2004), Slam and static driver

verifier: Technology transfer of formal methods inside microsoft, in
E. B. et al, ed., ‘Proceedings of the 4th International Conference on

Integrated Formal Methods (IFM 2004)’, Vol. 2999 of Lecture Notes
in Computer Science, Springer-Verlag, Canterbury, UK, pp. 1–20.

Barrett, G. (1995), ‘Model checking in practice: The t9000 virtual channel
processor’, IEEE Trans. Softw. Eng. 21(2), 69–78.

Barton, R. S. (1970), Ideas for computer systems organization: a personal
survey, in J. S. Jou, ed., ‘Software Engineering’, Vol. 1 of Proceedings

of the Third Symposium on Computer and Information Sciences held
in Miami Beach, Florida, December 1969, Academic Press, New York,

NY, USA, pp. 7–16.

Beer, I., Ben-David, S., Eisner, C. & Landver, A. (1996), Rulebase: An

industry-oriented formal verification tool, in ‘Proceedings of the 33rd
Conference on Design Automation (DAC’96)’, ACM Press, Las Vegas,

NV, pp. 655–660.

Behrmann, G., Larsen, K. G., Pearson, J., Weise, C. & Yi, W. (1999),

Efficient timed reachability analysis using clock difference diagrams,
in ‘Computer Aided Verification’, pp. 341–353.

Ben-Ari, M. (2008), Principles of the Spin Model Checker, Springer, London.

Ben-Ari, M., Manna, Z. & Pnueli, A. (1981), The temporal logic of branching

time, in ‘Proc. 8th ACM Symposium on Principles of Programming
Languages’, ACM Press, New York, pp. 164–176. Por. (Ben-Ari et al.

1983).

98

Temporal Logic Model Checkers as Applied in Computer Science

Ben-Ari, M., Manna, Z. & Pnueli, A. (1983), ‘The temporal logic of branch-

ing time’, Acta Informatica 20, 207–226. Por. (Ben-Ari et al. 1981).

Ben-David, S. & Heyman, T. (2000), Scalable distributed on-the-fly sym-

bolic model checking, in W. A. Hunt Jr. & S. D. Johnson, eds, ‘Pro-
ceedings of the 3rd International Conference on Formal Methods in

Computer-Aided Design (FMCAD 2000)’, Vol. 1954 of Lecture Notes
in Computer Science, Springer-Verlag, Austin, TX., pp. 390–404.

Bengtsson, J., Griffioen, W. O. D., Kristoffersen, K. J., Larsen, K. G., Lars-

son, F., Pettersson, P. & Yi, W. (1996), Verification of an audio pro-
tocol with bus collision using Uppaal, in R. Alur & T. A. Henzinger,

eds, ‘Proceedings of the Eighth International Conference on Computer
Aided Verification CAV’, Vol. 1102, Springer Verlag, New Brunswick,

NJ, USA, pp. 244–256.

Bengtsson, J. & Yi, W. (2004), Timed automata: Semantics, algorithms

and tools, in G. R. Jörg Desel, Wolfgang Reisig, ed., ‘Lectures on
Concurrency and Petri Nets’, Vol. 3098 of Lecture Notes in Computer

Science, Springer, pp. 87–124.

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci,
L. & Schnoebelen, P. (2001), Systems and Software Verification.

Model-Checking Techniques and Tools, Springer.

Best, B. & Grahlmann, B. (1996), Pep – More than a Petri net tool, in

T. Margaria & B. Steffen, eds, ‘Proceedings of the 2nd International
Conference on Tools and Algorithms for Construction and Analysis

of Systems (TACAS ’96)’, Vol. 1055 of Lecture Notes in Computer
Science, Springer-Verlag, Passau, Germany, pp. 397–401.

Bhat, G., Cleaveland, R. & Grumbero, O. (1995), Efficient on-the-fly model

checking for CTL∗, in ‘Proceedings of the 10th Annual IEEE Sympo-
sium on Logic in Computer Science’, IEEE Computer Society Press,

San Diego, CA, pp. 388–397.

Bianco, A. & Alfaro, L. d. (1995), Model checking of probabilistic and non-
deterministic systems, in ‘Foundations of Software Technology and

Theoretical Computer Science’, Vol. 1026 of Lectures Notes in Com-
puter Science, pp. 499–512.

Bianco, A. & De Alfaro, L. (1995), Model checking of probabilistic and
nondeterministic systems, in ‘Temporal Logies and Verification The-

ory. Foundations of Software Technology and Theoretical Computer

99

Kazimierz Trzęsicki

Science’, Vol. 1026 of Lecture Notes in Computer Science, Springer,

Berlin/Heidelberg, pp. 499–513.

Bidoit, B. M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L. & Schno-
ebelen, P. (2001), Systems and Software Verification: Model-checking

Techniques and Tools, Springer.

Biere, A., Cimatti, A., Clarke, E. M., Fujita, M. & Zhu, Y. (1999), Symbo-
lic model checking using SAT procedures instead of BDDs, in ‘Proce-

edings of the Design Automation Conference (DAC’99)’, pp. 317–320.

Biere, A., Cimatti, A., Clarke, E. M., Strichman, O. & Zhu, Y. (2003),

‘Bounded model checking’, Advances in Computers 58.

Biere, A., Cimatti, A., Clarke, E. M. & Zhu, Y. (1999), Symbolic model
checking without BDDs, in ‘Proceedings of Tools and Algorithms for

the Analysis and Construction of Systems (TACAS’99)’, number 1579
in ‘LNCS’.

Bjørner, N., Browne, A., Chang, E., Colón, M., Kapur, A., Manna, Z.,
Sipma, H. B. & Uribe, T. E. (1996), STeP: Deductive-algorithmic

verification of reactive and real-time systems, in ‘International Con-
ference on Computer Aided Verification’, Vol. 1102 of Lecture Notes

in Computer Science, Springer-Verlag, pp. 415–418.

Boehm, B. W. (1981), Software Engineering Economics, Prentice-Hall.

Bollig, B. & Wegener, I. (1996), ‘Improving the variable ordering of obdds

is np-complete’, IEEE Trans. Comput. 45(9), 993–1002.

Bolognesi, T. & Brinksma, E. (1987), ‘Introduction to the ISO specification
language Lotos’, Comput. Netw. ISDN Syst. 14, 25–59.

Bosnacki, D., Dams, D. & Holenderski, L. (2002), ‘Symmetric spin’, Int. J.
Soft. Tools Technol. Transfer 4(1), 65–80.

Bouajjani, A., Tripakis, S. & Yovine, S. (1997), On-the-fly symbolic mo-

del checking for real-time systems, in ‘Proceedings of 18th IEEE
Real-Time Systems Symposium (RTSS ’97)’, IEEE CS Press, Los Ala-

mitos, pp. 25–34.

Boyer, R. S. & Moore, J. S. (1979), A Computational Logic, Academic Press,

New York.

Boyer, R. S. & Moore, J. S. (1988), ‘Integrating decision procedures into
heuristic theorem provers: A case study of linear arithmetic’, Machine

Intelligence 11, 83–124.

100

Temporal Logic Model Checkers as Applied in Computer Science

Bradfield, J. C. & Stirling, C. (2001), Modal logics and µ-calculi: An intro-

duction, in J. A. Bergstra, A. Ponse & S. A. Smolka, eds, ‘Handbook
of Process Algebra’, Elsevier Science, chapter 4, pp. 293–330.

Bradfield, J. & Stirling, C. (1991), Local model checking for infinite state
spaces, in K. Larsen & A. Skou, eds, ‘Workshop on Computer Aided

Verification (CAV)’.

Brock, B. & Hunt, W. (1997), Formally specifying and mechanically veri-
fying programs for the motorola complex arithmetic processor dsp,

in ‘Proceedings of the IEEE International Conference on Computer
Design (ICCD’97)’, pp. 31–36.

Browne, A., Manna, Z. & Sipma, H. (1996), Modular verification diagrams,

Technical report, Computer Science Department, Stanford University.

Bryant, R. E. (1986), ‘Graph-based algorithms for Boolean function mani-
pulation’, IEEE Transactions on Computers C-35(8), 677–691.

Bryant, R. E. (1992), ‘Symbolic boolean manipulation with ordered bina-

ry-decision diagrams’, ACM Computing Surveys 24(3), 293–318.

Bryant, R. E. & Chen, Y.-A. (1995), Verification of arithmetic circuits
with binary moment diagrams, in ‘Design Automation Conference’,

pp. 535–541.

Büchi, J. R. (1960), ‘On a decision method in restricted second order arith-
metic’, Z. Math. Logik Grundlagen Math. 6, 66–92.

Bultan, T., Gerber, R. & Pugh, W. (1997), Symbolic model checking of

infinite state systems using presburger arithmetic, in ‘CAV ’97: Pro-
ceedings of the 9th International Conference on Computer Aided Ve-

rification’, Springer-Verlag, London, UK, pp. 400–411.

Bultan, T., Gerber, R. & Pugh, W. (1999), ‘Model-checking concurrent sys-

tems with unbounded integer variables: symbolic representations, ap-
proximations, and experimental results’, ACM Trans. Program. Lang.

Syst. 21(4), 747–789.

Burch, J., Clarke, E., McMillan, K., Dill, D. & Hwang, L. (1992), ‘Symbolic
model checking: 1020 states and beyond’, Inf. Comput. 2, 142–170.

Burch, J. R., Clarke, E. M. & Long, D. E. (1991), Symbolic model chec-

king with partitioned transition relations, in A. Halaas & P. B. De-
nyer, eds, ‘International Conference on Very Large Scale Integration’,

North-Holland, Edinburgh, Scotland, pp. 49–58.

101

Kazimierz Trzęsicki

Burch, J. R., Clarke, E. M., Long, D. E., MacMillan, K. L. & Dill1, D. L.

(1994), ‘Symbolic model checking for sequential circuit verification’,
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 13(4), 401–4124.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L. & Hwang,
L. J. (1990), Symbolic model checking: 1020 states and beyond, in

‘Proc. 5th Annual IEEE Symposium on Logic in Computer Science
(LICS’90)’, IEEE Computer Society Press, pp. 428–439.

Burgess, J. P. (1984), Basic tense logic, in D. Gabbay & F. Guenthner,

eds, ‘Handbook of Philosophical Logic’, Vol. II, D. Reidel, Dordrecht,
pp. 89–133.

Burkart, O., Caucal, D., Moller, F. & Steffen, B. (2001), Verification of

infinite structures, in S. S. J. Bergstra, A. Ponse, ed., ‘Handbook of
Process Algebra’, Amsterdam, pp. 545–623.

Calder, M. & Miller, A. (2001), Using Spin for feature interaction analysis –

A case study, in M. Dwyer, ed., ‘Proceedings of the 8th International
SpinWorkshop (Spin 2001)’, Vol. 2057 of Lecture Notes in Computer

Science, Springer-Verlag, Toronto, Canada, pp. 143–162.

Calder, M. & Miller, A. (2003), Generalizing feature interactions in email,
in D. Amyot & L. Logrippo, eds, ‘Feature Interactions in Telecom-

munications and Software Systems VII’, IOS Press, Ottawa, Canada,
pp. 187–205.

Cattel, T. (1994), Modeling and verification of a multiprocessor real-time os
kernel, in D. Hogrefe & S. Leue, eds, ‘Proceedings of the 7th WG6.1

International Conference on Formal Description Technigues (FORTE
’94)’, Vol. 6, Berne, Switzerland. International Federation for Infor-

mation Processing, Chapman and Hall, London, UK, pp. 55–70.

Cengarle, M. V. & Haeberer, A. M. (2000), Towards an epistemology-based
methodology for verification and validation testing, Technical re-

port 0001, Ludwig-Maximilian’s Universität, Institut für Informatik,
München, Oettingenstr. 67. 71 pages.

Chandy, M. K. & Jayadev, M. (1988), Parallel Program Design – a Foun-

dation, Addison-Wesley.

Chang, E., Pnueli, A. & Manna, Z. (1994), Compositional verification of
real-time systems, in ‘Proc. 9’th IEEE Symp. On Logic In Computer

Science’, pp. 458–465.

102

Temporal Logic Model Checkers as Applied in Computer Science

Cimatti, A., Clarke, E., Giunchig lia, E., Giunchig lia, F., Pistore, M., Ro-

veri, M., Sebastiani, R. & Tacchella, A. (2002), NuSMV2: A new
opensource tool for symbolic model checking, in E. Brinksma &

K. Larsen, eds, ‘Proceedings of the 14th International Conference
on Computer-Aided Verification (CAV 2002)’, Vol. 2404 of Lecture

Notes in Computer Science, Springer-Verlag, Copenhagen, Denmark,
pp. 359–364.

Cimatti, A., Clarke, E., Giunchig lia, F. & Roveri, M. (1999), NuSMV2: A
new symbolic model verifier, in N. Halbwachs & D. Peled, eds, ‘Proce-

edings of the 11th International Conference on Computer-Aided Veri-
fication (CAV ’99)’, Vol. 1633 of Lecture Notes in Computer Science,

Springer-Verlag, Trento, Italy, pp. 495–499.

Cimatti, A., Clarke, E. M., Giunchig lia, F. & Roveri, M. (2000), ‘NuSmv:
A new symbolic model checker’, International Journal on Software

Tools for Technology Transfer 2(4), 410–425.

Cimatti, A., Giunchig lia, F., Mingardi, G., Romano, D., Torielli, F. & Tra-

verso, P. (1997), Model checking safety critical software with Spin: An
application to a railway interlocking system, in R. Langerak, ed., ‘Pro-

ceedings of the 3rd SPIN Workshop (SPIN ’97)’, Twente University,
The Netherlands, pp. 5–17.

Clarke, E., Enders, R., Filkhorn, T. & Jha, S. (1996), ‘Exploiting symme-

try in temporal logic model checking’, Formal Methods Syst. Desi.
9(1/2), 77–104.

Clarke, E., Fujita, M., McGeer, P., McMillan, K., Yang, J. & Zhao, X.
(1993), Multiterminal binary decision diagrams: An efficient data
structure for matrix representation, in ‘Proc. IWLS’93’, pp. 1–15.

Clarke, E., Grumberg, O., Jha, o., Lu, Y. & Veith, H. (2000), Counter-
example-guided abstraction refinement, in E. Emerson & A. Sistla,

eds, ‘Computer Aided Verification’, Vol. 1855 of LNCS, Springer, Ber-
lin/Heidelberg, pp. 154–169.

Clarke, E. M. (2008), The birth of model checking, in Grumberg & Veith

(2008), pp. 1–26.

Clarke, E. M. & E., E. A. (1982a), Design and synthesis of synchroniza-

tion skeletons using branching-time temporal logic, in ‘Logic of Pro-
grams, Workshop’, Vol. 131 of Lecture Notes in Computer Science,

Springer-Verlag, London, UK, pp. 52–71.

103

Kazimierz Trzęsicki

Clarke, E. M. & E., E. A. (1982b), Synthesis of synchronization skeletons for

branching time temporal logic, in ‘Logic of Programs, Workshop’, Vol.
131 of Lecture Notes in Computer Science, Springer-Verlag, Yorktown

Heights, NY.

Clarke, E. M., Emerson, E. A. & Sistla, A. P. (1983), Automatic verification

of finite state concurrent systems using temporal logic specifications:
A practical approach, in ‘Conference Record of the Tenth Annual
ACM Symposium on Principles of Programming Languages’, Austin,

Texas, pp. 117–126.

Clarke, E. M., Emerson, E. A. & Sistla, A. P. (1986), ‘Automatic verifica-

tion of finite-state concurrent systems using temporal logic specifica-
tions’, ACM Transactions on Programming Languages and Systems

8(2), 244–263.

Clarke, E. M., Grumberg, J. O. & Peled, D. A. (1999), Model Checking, The
MIT Press.

Clarke, E. M., Grumberg, O., Hiraishi, H., Jha, S., Long, D. E., McMil-

lan, K. L. & Ness, L. A. (1993), Verification of the futurebus+ cache
coherence protocol, in D. Agnew, L. Claesen & R. Camposano, eds,

‘The Eleventh International Symposium on Computer Hardware De-
scription Languages and their Applications, Ottawa, Canada, 1993’,

Elsevier Science Publishers B.V., Amsterdam, pp. 5–20.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y. & Veith, H. (2001), Progress
on the state explosion problem in model checking, in ‘Informatics – 10

Years Back. 10 Years Ahead.’, Vol. 2000 of Lecture Notes in Computer
Science, Springer-Verlag, London, UK, pp. 176–194.

Clarke, E. M., Grumberg, O. & Long, D. E. (1994), ‘Model checking and

abstraction’, ACM Transactions on Programming Languages and Sys-
tems 16(5), 1512–1542.

Clarke, E. M., Wing, J. M., Alur, R., Cleaveland, R., Dill, D., Emerson,

A., Garland, S., German, S., Guttag, J., Hall, A., Henzinger, T., Hol-
zmann, G., Jones, C., Kurshan, R., Leveson, N., McMillan, K., Moore,

J., Peled, D., Pnueli, A., Rushby, J., Shankar, N., Sifakis, J., Sistla,
P., Steffen, B., Wolper, P., Woodcock, J. & Zave, P. (1996), ‘Formal

methods: state of the art and future directions’, ACM Computing Su-
rveys 28(4), 626–643.

Clarke, E. & Veith, H. (2003), Counterexamples revisited: Principles, algori-

thms, applications, in N. Derschowitz, ed., ‘Verification: Theory and

104

Temporal Logic Model Checkers as Applied in Computer Science

Practice. Essays Delivered to Zohar Manna on the Occasion of His

64th Birthday’, Springer, Berlin Heidelberg, pp. 208–224.

Clarke, E. & Wing, J. M. (1996), ‘Formal methods: State-of-the-art and
future directions’, ACM Comput. Surv. 28(4), 626–643. Report by

the Working Group on Formal Methods for the ACM Workshop on
Strategic Directions in Computing Research.

Clayberg, E. & Rubel, D. (2004), Eclipse: Building Commercial-Quality
Plug-Ins, Addison Wesley, Reading, MA.

Coe, T., Mathisen, T., Moler, C. & Pratt, V. (1995), ‘Computational aspects

of the pentium affair’, IEEE Comput. Sci. Eng. 2(1), 18–31.

Connelly, R., Gousie, M. B., Hadimioglu, H., Ivanov, L. & Hoffman, M.

(2004), ‘The role of digital logic in the computer science curriculum’,
Journal of Computing Sciences in Colleges 19, 5–8.

Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pǎsrǎeanu, C., Robby &

Zheng, H. (2000), Bandera: Extracting finite-state models from java
source code, in ‘Proceedings of the 22nd International Conference on

Software Engineering (ICSE 2000), Limerick, Ireland’, ACM Press,
New York, pp. 439–448.

Coudert, O., Berthet, C. & Madre, J. C. (1990), Verifying temporal proper-
ties of sequential machines without building their state diagrams, in

R. P. Kurshan & E. M. Clarke, eds, ‘Proceedings of the 1990 Work-
shop on Computer-Aided Verification’.

Courcoubetis, C. &M. Yannakakis, M. (1988), Verifying temporal properties

of finite state probabilistic programs, in ‘Proc. 29th Annual Sympo-
sium on Foundations of Computer Science (FOCS’88)’, IEEE Com-

puter Society Press, pp. 338–345.

Courcoubetis, C. & Yannakakis, M. (1990), Markov decision processes and

regular events, in M. Paterson, ed., ‘Proc. 17th International Collo-
quium on Automata, Languages and Programming (ICALP’90)’, Vol.

443 of Lecture Notes in Computer Science, Springer, pp. 336–349.

Courcoubetis, C. & Yannakakis, M. (1995), ‘The complexity of probabilistic
verification’, J. ACM 42(4), 857–907.

Dam, M. (1994), ‘CTL∗ and ECTL∗ as fragments of the modal µ-calculus’,
Theoretical Computer Science 126(1), 77–96.

Danjani-Brown, S., Cofer, D., Hartmann, G. & Pratt, S. (2003), Formal

modeling and analysis of an avionics triplex sensor voter, in T. Ball

105

Kazimierz Trzęsicki

& S. Rajamani, eds, ‘Model Checking Software: Proceedings of the

10th International SPIN Workshop (SPIN 2003)’, Vol. 2648 of Lecture
Notes in Computer Science, Springer-Verlag, Portland, OR, pp. 34–48.

Daskalopulu, A. (2000), Model checking contractual protocols, in J. Breu-
ker, R. Leenes & R. Winkels, eds, ‘Legal Knowledge and Information

Systems’, JURIX 2000: The 13th Annual Conference, IOS Press, Am-
sterdam, pp. 35–47.

Davis, M., Logemann, G. & Loveland, D. (1962), ‘A machine program for
theorem-proving’, Communications of the ACM 5(7), 394–397.

Davis, M. & Putnam, H. (1960), ‘A computing procedure for quantification

theory’, Journal of the ACM 7(3), 201–215.

Daws, C. & Tripakis, S. (1998), Model checking of real-time reachability pro-

perties using abstractions, in ‘Proc. of the 4th Workshop on Tools and
Algorithms for the Construction and Analysis of Systems’, Vol. 1384

of Lecture Notes in Computer Science, Springer-Verlag, pp. 313–329.

Daws, C. & Yovine, S. (1995), Two examples of verification of multirate
timed automata with Kronos, in ‘Proceedings of the 16th IEEE

Real-Time Systems Symposium (RTSS’95)’, Pisa, Italy, pp. 66–75.

de Alfaro, L. & Henzinger, T. A. (2001), Interface theories for compo-

nent-based design, in ‘Proceedings of the First International Work-
shop on Embedded Software (EMSOFT)’, Vol. 2211 of Lecture Notes

in Computer Science, Springer-Verlag, pp. 148–165.

deBakker, J. & Scott, D. (1969), A theory of programs. Unpublished manu-

script.

Demartini, C., Iosif, R. & Sisto, R. (1999), ‘A deadlock detection tool for
concurrent java programs’, Softw. Pract. Exper. 29(7), 577–603.

Detlefs, D., Nelson, G. & Saxe, J. B. (2003), Simplify: A theorem prover
for program checking, Technical report, Systems Research Center HP

Laboratories Palo Alto. HPL-2003-148.

Detlefs, D., Nelson, G. & Saxe, J. B. (2005), ‘Simplify: a theorem prover for

program checking’, J. ACM 52(3), 365–473.

Dijkstra, E. (1976), A Discipline of Programming, Series in Automatic Com-
putation, Prentice-Hall, Englewood Cliffs, NJ.

Dijkstra, E. W. (1968), Notes on structured programming, in E. W. D.
O.-J. Dahl & C. A. R. Hoare, eds, ‘Structured Programming’, Acade-

mic Press, London, pp. 1–82.

106

Temporal Logic Model Checkers as Applied in Computer Science

Dijkstra, E. W. (1975), ‘Guarded commands, nondeterminacy and formal

derivation of programs’, Comm. of the ACM 18(8), 453–457.

Dijkstra, E. W. (1989), In reply to comments. EWD1058.

Dill, D. L. (1996), The murφ verification system, in R. Alur & T. Henzinger,
eds, ‘Proceedings of the 8th International Conference on Computer

Aided Verification (CAV ’96)’, Vol. 1102 of Lecture Notes in Computer
Science, Springer-Verlag, New Brunswick, NJ, pp. 390–393.

Dill, D. L., Drexler, A. L., Hu, A. J. & Yang, C. H. (1992), Protocol veri-

fication as a hardware design aid, in ‘Proceedings of the 1992 IEEE
International Conference on Computer Design: VLSI in Computer

and Processors (ICCD’92)’, IEEE Computer Society, Cambridge, MA,
pp. 522–525.

Drusinsky, D. (2000), The temporal rover and the ATG rover, in ‘Pro-
ceedings of the 7th International SPIN Workshop on SPIN Model

Checking and Software Verification’, Vol. 1885 of Lecture Notes in
Computer Science, Springer-Verlag, London, UK, pp. 323–330.

Emerson, E. (1992), Real time and the µ-calculus, in I. W. de Bak-

ker et al., ed., ‘Proceedings of the REXWorkshop on Real-Time: The-
ory and Practice’, Vol. 600 of Lecture Notes in Computer Science,

Springer-Verlag, Mook, the Netherlands, pp. 176–194.

Emerson, E. A. (1990), Temporal and modal logic, in J. Leeuwen, ed.,
‘Handbook od Theoretical Computer Science’, Vol. A, Elsvier, chap-

ter 16, pp. 995–1072.

Emerson, E. A. (1996), Automated temporal reasoning about reactive sys-
tems, in ‘Logics for Concurency: Structure versus Automata’, Sprin-

ger, pp. 41–101.

Emerson, E. A. (2008), The beginning of model checking: A personal per-

spective, in Grumberg & Veith (2008), pp. 27–45.

Emerson, E. A. & Clarke, E. M. (1980), Characterizing correctness pro-
perties of parallel programs using fixpoints, in ‘Proceedings of the

7th Colloquium on Automata, Languages and Programming’, Sprin-
ger-Verlag, London, UK, pp. 169–181.

Emerson, E. A. & Halpern, J. Y. (1983), ‘sometimes’ and ‘not never’ re-

visited: On branching versus linear time temporal logic, in ‘10th
ACM Symposium on Theory of Computing’, ACM Press, New York,

pp. 127–140. Por. (Emerson & Halpern 1986).

107

Kazimierz Trzęsicki

Emerson, E. A. & Halpern, J. Y. (1986), “sometimes’ and ‘not never’ re-

visited: On branching versus linear time temporal logic’, Journal of
ACM 33(1), 151–178. Por. (Emerson & Halpern 1983).

Emerson, E. A. & Jutla, C. S. (1988), The complexity of tree automata

and logics of programs, in ‘Proceedings of the 29th Annual IEEE
Symposium on Foundations of Computer Science’, pp. 328–337.

Emerson, E. A. & Jutla, C. S. (1991), Tree automata, mu-calculus and de-
terminacy, in ‘SFCS ’91: Proceedings of the 32nd annual symposium

on Foundations of computer science’, IEEE Computer Society, Wa-
shington, DC, USA, pp. 368–377.

Emerson, E. A. & Jutla, C. S. (1999), ‘The complexity of tree automata

and logics of programs’, SIAM Journal on Computing 29, 132–158.

Emerson, E. A. & Lei, C.-L. (1986a), Efficient model checking in fragments

of the propositional mu-calculus (extended abstract), in ‘LICS’, IEEE
Computer Society, pp. 267–278.

Emerson, E. A. & Lei, C.-L. (1986b), Temporal reasoning under ge-

neralized fairness constraints, in ‘3rd Symposium on Theoretical
Aspects of Computer Science’, Lecture Notes in Computer Science,

Springer-Verlag, Berlin, pp. 21–36.

Emerson, E. A. & Lei, C.-L. (1987), ‘Modalities for model checking: Bran-

ching time logic strikes back’, Sci. of Comput. Program. 8(3), 275–306.

Emerson, E. A. & Sistla, A. P. (1997), ‘Utilizing symmetry when mo-
del-checking under fairness assumptions: An automata-theoretic ap-

proach’, ACM Trans. Program. Lang. Syst. 19(4), 617–638.

Emerson, E., Jha, S. & Peled, D. (1997), Combining partial order and sym-

metry to reductions, in E. Brinksma, ed., ‘Proceedings of the 3rd In-
ternational Conference on Tools and Algorithms for Construction and

Analysis of Systems (TACAS’97)’, Vol. 1217 of Lecture Notes in Com-
puter Science, Springer-Verlag, Enschede, the Netherlands, pp. 19–34.

Emerson, E. & Sistla, A. P. (1996), ‘Symmetry and model checking’, Formal

Methods Syst. Des. 9(1–2), 105–131.

Enderton, H. (1972), A Mathematical Introduction to Logic, Academic, New

York.

Esparza, J. (2003), An automata-theoretic approach to software verification,
in Z. Ésik & Z. Fülöp, eds, ‘Developments in Language Theory’, Vol.

2710 of Lecture Notes in Computer Science, Springer, p. 21.

108

Temporal Logic Model Checkers as Applied in Computer Science

Floyd, R. W. (1967), Assigning meanings to programs, in J. T. Schwartz, ed.,

‘Mathematical Aspects of Computer Science. Proceedings of Symposia
in Applied Mathematics’, Vol. 19, American Mathematical Society,

Providence, pp. 19–32.

Gabbay, D. M. (1981), Expressive functional completness in tense logic,
in U. Mönnich, ed., ‘Aspects of Philosophical Logic’, Dordrecht,

pp. 91–117. Preliminary Report.

Gabbay, D. M. (1989), The declarative past and imperative future: Execu-
table temporal logic for interactive systems, in B. Banieqbal, H. Bar-

ringer & A. Pnueli, eds, ‘Proceedings of Colloquium on Temporal Lo-
gic in Specification’, Vol. 398 of Lecture Notes in Computer Science,

Springer-Verlag, Altrincham, pp. 67–89.

Gabbay, D. M., Pnueli, A., Shelah, S. & Stavi, J. (1980), On the temporal
analysis of fairness, in ‘7th Annual ACM Symposium on Principles

of Programming Languages (POPL’80)’, Vol. 47 of Applications of
Modal Logic in Linguistics, ACM Press, pp. 163–173.

Garavel, H. & Sifakis, J. (1990), Compilation and verification of Lotos

specifications, in L. L. et al., ed., ‘Proceedings of the IFIP WG6.1
10th International Symposium on Protocol Specification, Testing and

Verification (PSTV ’90)’, Ottawa, Canada, pp. 379–394.

Gerth, R., Kuiper, R., Peled, D. & Penczek, W. (1995), A partial order
approach to branching time logic model checking, in ‘Proceedings of
the Third Israel Symposium on the Theory of Computing and Systems

(ISTCS’95), Tel Aviv, Israel, January 4–6, 1995’.

Girault, C. & Valk, R., eds (2003). Petri Nets for Systems Engineering: A
Guide to Modeling, Verification, and Applications, Springer-Verlag,

New York.

Giunchig lia, F. & Traverso, P. (1999), Planning as model checking, in ‘Pro-
ceedings of the Fifth European Workshop on Planning, (ECP’99)’,

Springer, pp. 1–20.

Glabbeek, R. J. v. (2001), The linear time – branching time spectrum I, in
J. A. Bergstra, A. Ponse & S. A. Smolka, eds, ‘Handbook of Process

Algebra’, Elsevier Science, chapter 4, pp. 3–99.

Godefroid, P. (1996a), On the costs and benefits of using partial-order me-
thods for the verification of concurrent systems, in D. P. et al., ed.,

‘Proceedings of the DIMACS Workshop on Partial Order Methods in

109

Kazimierz Trzęsicki

Verification (POMIV’96)’, Vol. 29 of Princeton, NJ. DIMACS Series

in Discrete Mathematics and Theoretical Computer Science, Ameri-
can Mathematical Society, Boston, MA, pp. 289–303.

Godefroid, P. (1996b), Partial Order Methods for the Verification of Con-

current Systems, Vol. 1032 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin.

Godefroid, P. (1997), Model checking for programming languages using veri-

soft, in ‘Proceedings of the 24th Symposium on Principles of Program-
ming Languages (POPL’97)’, ACM Press, New York, pp. 174–186.

Goranko, V. (2000), Temporal logics of computations.

Gordon, M. & Melham, T. (1993), Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic, Cambridge University Press.

Grumberg, O., Heyman, T., Ifergan, N. & Schuster, A. (2005), Achieving
speedups in distributed symbolic reachability analysis through asyn-

chronous computation, in D. Borrione & W. Paul, eds, ‘Correct Har-
dware Design and Verification Methods’, Vol. 3725 of Lecture Notes

in Computer Science, Berlin-Heidelberg, pp. 129–145.

Grumberg, O. & Long, D. E. (1994), ‘Model checking and modular verifi-
cation’, ACM Transactions on Programming Languages and Systems

16(3), 843–871.

Grumberg, O. & Veith, H., eds (2008), 25 Years of Model Checking - History,

Achievements, Perspectives, Vol. 5000 of Lecture Notes in Computer
Science, Springer.

Hamblin, C. L. (1969), ‘Starting and stopping’, The Monist 53, 410–425.

Hansson, H. & Jonsson, B. (1994), ‘A logic for reasoning about time and
reliability’, Formal Aspects of Computing 6, 512–535.

Hardin, R. H., Harel, Z. & Kurshan, R. P. (1996), COSPAN, in R. Alur &

T. A. Henzinger, eds, ‘Proceedings of the eighth International Confe-
rence on Computer Aided Verification (CAV ’96)’, Vol. 1102 of Lecture

Notes in Computer Science, Springer Verlag, pp. 423–427.

Hasle, P. F. V. & Øhrstrøm, P. (2004), Foundations of temporal logic. The

WWW-site for Arthur Prior, http://www.kommunikation.aau.dk/
prior/index2.htm.

Havelund, K. & Pressburger, T. (2000), ‘Model checking java programs using

java pathfinder’, Inte. J. Softw. Tools Technol. Transfer 2(4), 366–381.

110

Temporal Logic Model Checkers as Applied in Computer Science

Heath, J., Kwiatowska, M., Norman, G., Parker, D. & Tymchysyn, O.

(2006), Probabalistic model checking of complex biological path-
ways, in C. Priami, ed., ‘Proc. Comp. Methods in Systems Biology,

(CSMB’06)’, Vol. 4210 of Lecture Notes in Bioinformatics, Springer,
pp. 32–47.

Hennessy, M. & Milner, R. (1985), ‘Algebraic laws for nondeterminism and

concurrency’, Journal of the Association for Computing Machinery
32(1), 137–161.

Henzinger, T., Ho, P. & Wong-Toi, H. (1997), ‘A model checker for hybrid

systems’, Int. J. Softw. Tools Technol. Transfer 1(1/2), 110–122.

Henzinger, T., Jhala, R., Majumdar, R. & Sutre, G. (2002), Lazy abstrac-
tion, in ‘Proceedings of the 29th Annual Symposium on Principles of

Programming Languages’, ACM Press, pp. 58–70.

Henzinger, T., Jhala, R., Majumdar, R. & Sutre, G. (2003), Software veri-

fication with Blast, in T. Ball & S. Rajamani, eds, ‘Model Chec-
king Software: Proceedings of the 10th International Spin Work-

shop (Spin 2003)’, Vol. 2648 of Lecture Notes in Computer Science,
Springer-Verlag, Portland, OR, pp. 235–239.

Hermanns, H., Katoen, J.-P., Meyer-Kayser, J. & Siegle, M. (2000), A Mar-

kov chain model checker, in ‘Tools and Algorithms for Construction
and Analysis of Systems’, pp. 347–362.

Hillston, J. (1996), A Compositional Approach to Performance Modeling,

Distinguished Dissertations in Computer Science, Cambridge Univer-
sity Press, Cambridge, UK.

Hoare, C. A. R. (1969), ‘An axiomatic basis for computer programming’,

Communications of the ACM 12(10), 576–580,583. Również w: (Hoare
& Jones 1989, 45–58).

Hoare, C. A. R. (1996), How did software get so reliable without proof?, in
‘Proceedings of the Third International Symposium of Formal Me-

thods Europe on Industrial Benefit and Advances in Formal Me-
thods (FME’96)’, Vol. 1051 of LNCS, Springer-Verlag, London, UK,

pp. 1–17.

Hoare, C. A. R. & Jones, C. B. (1989), Essays in Computing Science, Pren-
tice Hall.

Hoare, T. (2003), ‘The verifying compiler: A grand challenge for computing

research’, J. ACM 50, 63–69.

111

Kazimierz Trzęsicki

Holzmann, G. (1991), Design and validation of computer protocols, Prentice

Hall, New Jersey.

Holzmann, G. (1998), ‘An analysis of bitstate hashing’, Formal Methods

Syst. Des. 13(3), 289–307.

Holzmann, G. (1999), The engineering of a model checker: The gnu
i-protocol case study revisited, in D. D. et al., ed., ‘Proceedings of

the 5th and 6th International Spin Workshops’, Vol. 1680 of Lecture
Notes in Computer Science, Springer-Verlag, Trento, Italy and Toulo-

use, France, pp. 232–244.

Holzmann, G. (2003), The Spin Model Model Checker: Primer and Refe-
rence Manual, Addison Wesley, Boston, MA.

Holzmann, G. J. (1997), ‘The model checker SPIN’, IEEE Transactions on

Software Engineering 23(5), 279–295.

Holzmann, G. J. (2001), Economics of software verification, in ‘Proc. Work-
shop on Program Analysis for Software Tools and Engineering’, ACM,

Snowbird, Utah, USA.

Holzmann, G. J. (2002), Software analysis and model checking, in ‘CAV’,
pp. 1–16.

Holzmann, G. J. (2004), The SPIN Model Checker: Primer and Reference

Manual, Addison-Wesley.

Holzmann, G. J. & Peled, D. (1996), The state of SPIN , in R. Alur & T. A.
Henzinger, eds, ‘Proceedings of the eighth International Conference on

Computer Aided Verification (CAV ’96)’, Vol. 1102 of Lecture Notes
in Computer Science, Springer Verlag, pp. 385–389.

Holzmann, G. J. & Smith, M. H. (2002), FeaVer 1.0 user guide, Technical
report, Bell Labs. 64 pgs.

Holzmann, G. & Peled, D. (1994), An improvement in formal verification,

in D. Hogrefe & S. Leuse, eds, ‘Proceedings of the 7th WG6.1 Inter-
national Conference on Formal Description Techniques (FORTE’94)’,

Vol. 6, Berne, Switzerland. International Federation for Information
Processing, Chapman and Hall, London, UK, pp. 197–211.

Holzmann, G. & Smith, M. (1999a), A practical method for the verifica-

tion of event-driven software, in ‘Proceedings of the 21st Internatio-
nal Conference on Software engineering (ICSE ’99), Los Angeles, CA’,

ACM Press, New York, pp. 597–607.

112

Temporal Logic Model Checkers as Applied in Computer Science

Holzmann, G. & Smith, M. (1999b), Software model checking. Extracting ve-

rification models from source code, in J. W. et al., ed., ‘Proceedings of
the Joint International Conference on Formal Description Techniques

for Distributed Systems and Communication Protocols and Protocol
Specification, Testing and Verification (FORTE/PSTV ’99)’, Vol. 156,

International Federation for Information Processing, Kluwer, Beijing,
China, pp. 481–497.

Huber, P., Jenson, A., Jepson, L. & Jenson, K. (1985), Towards reachability

trees for high-level Petri nets, in G. R. et al., ed., ‘Proceedings of the
European Workshop on Applications and Theory in Petri Nets’, Vol.

188 of Lecture Notes in Computer Science, Springer-Verlag, Aarhus,
Denmark, pp. 215–233.

Hughes, G. E. & Cresswell, M. J. (1968), An Introduction to Modal Logic,

Methuen and Co., London.

Huth, M. & Ryan, M. (2004), Logic in Computer Science. Modelling and
Reasoning about Systems, 2 edn, Cambridge University Press, Cam-

bridge. I ed. 1999.

Iosif, R. & Sisto, R. (1999), dspin: A dynamic extension of spin, in

D. D. et al., ed., ‘Proceedings of the 5th and 6th International
SPIN Workshops’, Vol. 1680 of Lecture Notes in Computer Science,

Springer-Verlag, Trento, Italy and Toulouse, France, pp. 20–33.

Ip, C. & Dill, D. (1996), ‘Better verification through symmetry’, Formal
Methods in Syst. Des. 9, 41–75.

Kaminski, M. (1994), ‘A branching time logic with past operators’, Journal

of Computer and System Sciences 49(2), 223–246.

Kamp, J. A. W. (1968), Tense Logic and the Theory of Linear Order, Phd
thesis, University of California, Los Angeles.

Katoen, J.-P., Khattri, M. & Zapreev, I. S. (2005), A Markov reward
model checker, in ‘Quantitative Evaluation of Systems (QEST)’,

pp. 243–244.

Kaufmann, M. & Moore, J. S. (2004), ‘Some key research problems in auto-
mated theorem proving for hardware and software verification’, Rev.

R. Acad. Cien. Serie A. Mat. 98(1), 181–196.

Kautz, H. & Selman, B. (1992), Planning as satisfiability, in ‘ECAI ’92: Pro-
ceedings of the 10th European conference on Artificial intelligence’,

John Wiley & Sons, Inc., New York, NY, USA, pp. 359–363.

113

Kazimierz Trzęsicki

Kolmogorov, A. N. (1936), ‘Anfangsgründe der Theorie der Markoffschen

Ketten mit unendlichen vielen möglichen Zuständen’,Matematicheskii
Sbornik pp. 607–610.

Kozen, D. (1982), Results on the propositional µ-calculus, in M. Nielsen &

E. M. Schmidt, eds, ‘Automata, Languages and Programming. Ninth
Colloquium 1982’, Vol. 140 of Lecture Notes in Computer Science,

Springer-Verlag, pp. 348–359.

Kozen, D. (1983), ‘Results on the propositional µ-calculus’, Theoretical
Computer Science 27(3), 333–354.

Kröger, F. (1977), ‘A logic of algorithmic reasoning’, Acta Informatica
8(3), 243–266.

Kröger, F. (1987), Temporal Logic of Programs, Springer-Verlag New York,

Inc., New York, NY, USA.

Kröger, F. & Merz, S. (1991), ‘Temporal logic and recursion’, Fundam.

Inform. 14(2), 261–281.

Kröger, F. & Merz, S. (2008), Temporal Logic and State Systems, Springer.

Kumar, S. & Li, K. (2002), Using model checking to debug device firmware,

in ‘Proceedings of the 5th Symposium on Operating System Design
and Implementation (OSDI 2002)’, USENIX, Boston, MA.

Kuntz, M., Siegle, M. & Werner, E. (2004), Symbolic performance and de-

pendability evaluation with the tool CASPA.

Kupferman, O. & Pnueli, A. (1995), Once and for all, in ‘Proc. 10th IEEE

Symposium on Logic in Computer Science’, San Diego, pp. 25–35.

Kupferman, O. & Vardi, M. Y. (1995), On the complexity of branching mo-
dular model checking, in ‘Proceedings of 6th International Conference

on Concurrency Theory (CONCUR ’95)’, Vol. 962 of Lecture Notes
in Computer Science, Springer Verlag, pp. 408–422.

Kupferman, O. & Vardi, M. Y. (1996), On the complexity of branching
modular model checking, in ‘Proceedings of the eighth International

Conference on Computer Aided Verification (CAV ’96)’, Vol. 1102 of
Lecture Notes in Computer Science, Springer Verlag, pp. 75–86.

Kupferman, O. & Vardi, M. Y. (1997), Module checking revisited, in ‘Proce-

edings of the ninth International Conference on Computer Aided Ve-
rification (CAV ’97)’, Vol. 1254 of Lecture Notes in Computer Science,

Springer Verlag, pp. 36–47.

114

Temporal Logic Model Checkers as Applied in Computer Science

Kupferman, O. & Vardi, M. Y. (1998), Modular model checking, in ‘Com-

positionality: the significant difference.’, Vol. 1536 of Lecture No-
tes in Computer Science, International symposium, Bad Malente,

Springer-Verlag, pp. 381–401.

Kupferman, O., Vardi, M. Y. & Wolper, P. (2000), ‘An automata-theoretic

approach to branching-time model checking’, Journal of the ACM
47(2), 312–360.

Kurshan, R. (1995), Computer-Aided Verification of Coordinating Proces-

ses: The Automata-Theoretic Approach, Princeton Series in Computer
Science, Princeton University Press, Princeton, NJ.

Kwiatkowska, M., Norman, G. & Parker, D. (2001), PRISM : Probabili-

stic symbolic model checker, in P. Kemper, ed., ‘Proc. Tools Session
of Aachen 2001’, International Multiconference on Measurement, Mo-

delling and Evaluation of Computer-Communication Systems, Dort-
mund, pp. 7–12. Available as Technical Report 760/2001, University

of Dortmund.

Kwiatkowska, M., Norman, G. & Parker, D. (2002a), Probabilistic symbolic
model checking with PRISM : A hybrid approach, in J.-P. Katoen &

P. Stevens, eds, ‘Proc. 8th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS’02)’,

Vol. 2280 of Lecture Notes in Computer Science, Springer, pp. 56–66.

Kwiatkowska, M., Norman, G. & Parker, D. (2002b), Probabilistic sym-
bolic model checking with Prism, in J. Katoen & P. Stevens, eds,

‘Proceedings of the 8th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS 2002)’, Vol.

2280 of Lecture Notes in Computer Science, Springer-Verlag, Greno-
ble, France, pp. 52–66. Held as part of the Joint European Conference

on Theory and Practice of Software (ETAPS 2002).

Lamport, L. (1980), ‘Sometimes’ is sometimes ‘not never’: on the temporal
logic of programs, in ‘Proceedings of the 7th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages’, ACM Press,
New York, pp. 174–185.

Lamport, L. (1983), What good is temporal logic?, in ‘Information Proces-

sing’83. Proc. IFIP 9th World Computer Congress’, North-Holland,
pp. 657–668.

Lamport, L. (1994), ‘The temporal logic of actions’, ACM Transactions on

Programming Languages and Systems 16(3), 872–923.

115

Kazimierz Trzęsicki

Laroussinie, F. (1995), ‘About the expressive power of CTL combinators’,

Information Processing Letters 54(6), 343–345.

Laroussinie, F., Markay, N. & Schnoebelen, P. (2002), Temporal logic with
forgettable past, in ‘17th IEEE Symposium on Logic in Computer

Science (LICS)’, IEEE Computer Society Press, pp. 383–392.

Laroussinie, F., Markey, N. & Schnoebelen, P. (2004), Model checking timed

automata with one or two clocks, in ‘Proc. of the 15th Int. Conf. on
Concurrency Theory (CONCUR’04)’, Vol. 3170 of Lecture Notes in

Computer Science, Springer, pp. 387–401.

Laroussinie, F., Markey, N. & Schnoebelen, P. (2005), ‘Efficient timed mo-
del checking for discrete time systems’, Theo. Comp. Sci. 353(1–3),

249–271.

Laroussinie, F. & Schnoebelen, P. (1994), A hierarchy of temporal logics

with past, in ‘Proc. STACS’94, Caen, France’, Vol. 775 of LNCS,
Springer-Verlag, pp. 47–58.

Laroussinie, F. & Schnoebelen, P. (2000), ‘Specification in CTL+ Past for

verificatin in CTL’, Information and Computation 156, 236–263].

Larsen, K. G., Pettersson, P. & Yi, W. (1997), ‘Uppaal in a nutshell’,

International Journal on Software Tools for Technology Transfer
1(1–2), 134–152.

Larson, K., Pettersson, P. & Yi, W. (1995), Model-checking for real-time

systems, in H. Reichel, ed., ‘Proceedings of the 10th International
Symposium on the Fundamentals of Computation Theory (FCT’95)’,

Vol. 965 of Lecture Notes in Computer Science, Springer-Verlag, Dres-
den, Germany, pp. 62–88.

Larson, K., Pettersson, P. & Yi, W. (1997), ‘Uppaal in a nutshell’, Int. J.
Softw. Tools. Technol. Transfer 1(1/2), 134–152.

Lasota, S. & Walukiewicz, I. (2005), Alternating timed automata, in ‘Proc.

of the 8th Int. Conf. on Foundations of Software Science and Com-
putation Structures (FoSSaCS’05)’, Vol. 3441 of LNCS, Springer,

pp. 299–314.

Lee, C. (1959), ‘Representation of switching circuits by binary-decision pro-

grams’, Bell System Technical Journal 38, 985–999.

L‘eonard, L. & Leduc, G. (1997), ‘An introduction to et-lotos for the
description of time-sensitive systems’, Comput. Netw. ISDN Syst.

29(3), 271–292.

116

Temporal Logic Model Checkers as Applied in Computer Science

L‘eonard, L. & Leduc, G. (1998), ‘A formal definition of time in lotos’,

Formal Aspects Comput. 10(3), 248–266.

Lichtenstein, O. & Pnueli, A. (1985), Checking that finite state concurrent
programs satisfy their linear specification, in ‘Proc. 12th ACM Symp.

Principles of Programming Languages (POPL’85)’, ACM Press, New
York, pp. 97–107.

Lichtenstein, O. & Pnueli, A. (2000), ‘Propositional temporal logics: Deci-
dability and completeness’, Journal of the IGPL 8(1), 55–85.

Lichtenstein, O., Pnueli, A. & Zuck, L. D. (1985), The glory of the past,

in R. Parikh, ed., ‘Proceedings 3rd Workshop on Logics of Programs,
Brooklyn, NY, USA, 17–19 June 1985’, Vol. 193 of Lecture Notes in

Computer Science, Springer-Verlag, Berlin, pp. 196–218.

Lions, J. L. et al. (1996), ARIANE-5; Flight 501 Failure, Technical report,

Report by the Inquiry Board. The Chairman of the Board: Prof. J. L.
LIONS,

http://www.cs.unibo.it/~laneve/papers/ariane5rep.html.

Lipton, R. J. (1975), ‘Reduction: A method of proving properties of parallel
programs’, Communications of the ACM 18(12), 717–721.

M. Kaufmann, M., Manolios, P. & Moore, J. S. (2000), Computer-Aided
Reasoning: An Approach, Kluwer Academic Press, Boston.

Manna, Z. & A. Pnueli, A. (1992, 1995a), The Temporal Logic of Reactive

and Concurrent Systems, Vol. 1: Specification, 2: Safety, Springer-Ver-
lag, New York.

Manna, Z. & A. Pnueli, A. (1995b), The Temporal Logic of Reactive and
Concurrent Systems: Safety, Springer-Verlag, New York.

Manna, Z., Bjørner, N., Browne, A., Chang, E., Alfaro, L. D., Devarajan, H.,

Kapur, A., Lee, J. & Sipma, H. (1994), STeP: The stanford tempo-
ral prover, Technical report, Computer Science Department, Stanford

University Stanford, CA.

Manna, Z. & Pnueli, A. (1981), Verification of concurrent programs: The

temporal framework, in R. Boyer & J. Moore, eds, ‘The Correctness
Problem in Computer Science’, Academic Press, London, pp. 215–273.

Manna, Z. & Pnueli, A. (1989), The anchored version of the temporal frame-

work, in ‘Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency’, Vol. 354 of Lect. Notes in Comp. Sci.,

Springer-Verlag, pp. 201–284.

117

Kazimierz Trzęsicki

Manna, Z. & Waldinger, R. (1985), The Logical Basis for Computer Pro-

gramming, Addison-Wesley.

Markov, A. A. (1907), ‘Investigations of an important case of dependent

trials’, Izvestia Acad., Nauk VI, Series I 61.

Mateescu, R. (2003), On-the-fly verification using Cadp, in T. Arts &
W. Fokkink, eds, ‘Proceedings of the 8th International Workshop

on Formal Methods for Industrial Critical Systems (FMICS 2003)’,
Vol. 80 of Electronic Notes in Theoretical Computer Science, Else-

vier, Trondheim, Norway, pp. 1–5.

Mateescu, R. & Garavel, H. (1998), Xtl: A metalanguage and tool for tem-

poral logic model-checking, in T. Margaria & B. Steffen, eds, ‘Proce-
edings of the International Workshop on Software Tools for Techno-

logy Transfer (STTT ’98)’, Aalborg, Denmark.

McMillan, K. (2002), Lazy abstraction with interpolants, in E. Brink-
sma & K. G. Larsen, eds, ‘Computer Aided Verification. Abstrac-

tion/Refinement’, Vol. 4144 of Lecture Notes in Computer Science,
Springer, pp. 123–136.

McMillan, K. L. (1993), Symbolic Model Checking: An approach to the State
Explosion Problem, Kluwer Academic, Hingham, MA.

McMillan, K. L. & Schwalbe, J. (1992), Formal specification of the giga-

max cache consistency protocols, in N. Suzuki, ed., ‘Proceedings of
the 1991 International Symposium on Shared Memory Multiproces-

sors’, Information Processing Society of Japan, MIT Press, Tokyo,
pp. 242–251.

Miller, A., Donaldson, A. & Calder, M. (2006), ‘Symmetry in temporal logic

model checking’, ACM Computing Surveys 38(3).

Mishra, B. & Clarke, E. M. (1985), ‘Automatic and hierarchical verification

of asynchronous circuits using temporal logic’, Theoretical Computer
Science 38, 269–291.

Müller-Olm, M., Schmidt, D. & Steffen, B. (1999), Model-checking: A tuto-

rial introduction, in A. Cortesi & G. File, eds, ‘Proceedings of the 6th
International Static Analysis Symposium (SAS’99)’, Vol. 1694 of Lec-

ture Notes in Computer Science, Springer-Verlag, Venice, pp. 330–354.

Naur, P. (1966), ‘Proof of algorithms by general snapshots’, BIT 6(4),

310–316.

118

Temporal Logic Model Checkers as Applied in Computer Science

Nicollin, X. & Sifakis, J. (1994), ‘Atp: Theory and application’, Inf. Comput.

114, 131–178.

Owicki, S. S. & Lamport, L. (1982), ‘Proving liveness properties of concur-
rent programs’, ACM Trans. Program. Lang. Syst. 4(3), 455–495.

Park, D. (1981), Concurrency and automata on infinite sequences, in
P. Deussen, ed., ‘Theoretical Computer Science’, Vol. 104 of Lecture

Notes in Computer Science, Springer-Verlag, pp. 167–183.

Peled, D. (1996a), ‘Combining partial order reductions with on-the-fly mo-
del checking’, Formal Methods Syst. Des. 8, 39–64.

Peled, D. (1996b), Partial order reduction: Linear and branching temporal
logics and process algebras, in D. P. et al., ed., ‘Proceedings of the

DIMACS Workshop on Partial Order Methods in Verification (PO-
MIV’96)’, Vol. 29 of Princeton, NJ. DIMACS Series in Discrete Ma-

thematics and Theoretical Computer Science, American Mathematical
Society, Boston, MA, pp. 233–257.

Petcu, D. (2003), Parallel explicit state reachability analysis and state space

construction, in ‘Second International Symposium on Parallel and Di-
stributed Computing’, pp. 207–214.

Pnueli, A. (1977), The temporal logic of programs, in ‘Proceedings of
the 18th IEEE-CS Symposium on Foundation of Computer Science

(FOCS-77)’, IEEE Computer Society Press, pp. 46–57.

Pnueli, A. (1981), ‘The temporal semantics of concurrent programs’, The-
oretical Comput. Sci. 13, 45–60.

Pnueli, A. (1985a), In transition from global to modular temporal re-
asoning about programs, in ‘Logic and Models of Concurrent Sys-

tems’, Vol. F-13, NATO Advanced Summer Institutes, Springer Ver-
lag, pp. 123–144.

Pnueli, A. (1985b), Linear and branching structures in the semantics

and logics of reactive systems, in ‘Proceedings of the 12th ICALP’,
pp. 15–32.

Pnueli, A. & Zuck, L. (1993), ‘Probabilistic verification’, Information and
Computation 103, 1–29.

Post, H. & Küchlin, W. (2006), Automatic data environment construction

for static device drivers analysis, in ‘SAVCBS ’06: Proceedings of the
2006 conference on Specification and verification of component-based

systems’, ACM, New York, NY, USA, pp. 89–92.

119

Kazimierz Trzęsicki

Prasad, M. R., Biere, A. & Gupta, A. (2005), ‘A survey of recent advances

in sat-based formal verification’, International Journal on Software
Tools for Technology Transfer (STTT) 7(2), 156–173.

Pratt, V. R. (1980), ‘Applications of modal logic to programming’, Studia
Logica 9, 257–274.

Pratt, V. R. (1981), A decidable µ-calculus: Preliminary report, in ‘22nd

Annual Symposium on Foundations of Computer Science’, IEEE, Na-
shville, Tennessee, pp. 421–427.

Presburger, M. (1929), Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Opera-

tion hervortritt, in F. Leja, ed., ‘Sprawozdanie z I Kongresu Matema-
tyków Krajów Słowiańskich’, Skład Głowny, Warszawa, pp. 92–101.

Prior, A. N. (1967), Past, Present and Future, Oxford University Press.

Prior, A. N. (1996), A statement of temporal realism, in B. J. Copeland,
ed., ‘Logic and Reality: Essays on the Legacy of Arthur Prior’, Oxford

University Press.

Queille, J.-P. & Sifakis, J. (1982), Specification and verification of concur-
rent systems in CESAR, in ‘Proceedings 5th International Symposium

on Programming’, Vol. 137 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 337–351.

Quielle, J. & Sifakis, J. (1982), Specification and verification of concurrent
systems in CÆSAR, in Grumberg & Veith (2008), pp. 195–220.

Randell, B. (1973), The Origin of Digital Computers, Springer Verlag.

Reisig, W. (1989), Towards a temporal logic for causality and choice in

distributed systems, in ‘Linear Time, Branching Time and Partial
Order in Logics and Models for Concurrency’, Vol. 354 of Lect. Notes

in Comp. Sci., Springer, pp. 603–627.

Rescher, N. & Urquhart, A. (1971), Temporal Logic, Springer, Wien, New

York.

Reynolds, M. (2005), ‘An axiomatization of PCTL∗’, Information and Com-
putation 201(1), 72–119.

Rinard, M. & Diniz, P. (1997), ‘Commutativity analysis: A new analysis
technique for parallelizing compilers’, ACM Transactions on Program-

ming Languages and Systems 19(6), 1–47.

120

Temporal Logic Model Checkers as Applied in Computer Science

Robby, Dwyer, M. & Hatcliff, J. (2003), Bogor: An extensible and high-

ly-modular model checking framework, in ‘Proceedings of the 10th
ACM SIGSOFT Symposium on Foundations of Software Engineering,

Helsinki, Finland’, ACM Press, New York, pp. 267–276. Held jointly
with the 9th European Software Engineering Conference (ESEC/FSE

2003).

Rutten, J., Kwiatkowska, M., Norman, G. & Parker, D. (2004), Mathemati-
cal Techniques for Analysing Concurrent and Probabilisitic Systems,

Vol. 23 of American Mathematical Society, CRM Monograph Series,
Centre de Recherches Mathématiques, Université de Montréal.

Schneider, K. (2003), Verification of Reactive Systems. Formal Methods and
Algorithms, Texts in Theoretical Computer Science (EATCS Series),

Springer-Verlag.

Schnoebelen, P. (2002), ‘The complexity of temporal logic model checking’,
Advances in Modal Logic 4, 1–44.

Schuele, T. & Schneider, K. (2004), Global vs. local model checking: A com-
parison of verification techniques for infinite state systems, in ‘SEFM

’04: Proceedings of the Software Engineering and Formal Methods,
Second International Conference’, IEEE Computer Society, Washing-

ton, DC, USA, pp. 67–76.

Schuele, T. & Schneider, K. (2007), ‘Bounded model checking of infinite
state systems’, Form. Methods Syst. Des. 30(1), 51–81.

Shurek, G. & Grumberg, O. (1990), The modular framework of compu-
ter-aided verification: Motivation, solution and evaluation criteria, in

‘Proceedings of the 1990 Workshop on Computer-Aided Verification’.

Sipma, O., Uribe, H. & Manna, Z. (1996), Deductive model checking, in
‘International Conference on Computer Aided Verification’, Vol. 1102

of LNCS, Springer-Verlag, pp. 208–219.

Sistla, A. P. & Clarke, E. M. (1985), ‘The complexity of propositional linear

temporal logics’, Journal of the ACM 32(3), 733–749.

Somenzi, F. (1997), Cudd: Cu decision diagram package, Technical report,
Public software, http://vlsi.colorado.edu/.

Starke, P. H. (1991), ‘Reachability analysis of Petri nets using symmetries’,
Syst. Anal. Model. Simul. 8(5/5), 293–303.

Szałas, A. (1995), ‘Temporal logic of programs: a standard approach’,

pp. 1–50.

121

Kazimierz Trzęsicki

Thomas, W. (1990), Automata on infinite objects, in J. Leeuwen, ed., ‘Hand-

book of Theoretical Computer Science’, Vol. B: Formal Models and
Semantics, Elsevier, pp. 165–191.

Thomas, W. (1997), Languages, automata, and logic, in ‘Handbook of For-

mal Languages’, Springer, pp. 389–455.

Turing, A. M. (1936–37), ‘On computable numbers, with an application
to the Entscheidungsproblem’, Proceedings of the London Mathema-

tical Society 42(Series 2), 230–265. Received May 25, 1936; Appen-
dix added August 28; read November 12, 1936; corrections Ibid. vol.

43(1937), pp. 544–546. Turing’s paper appeared in Part 2 of vol.
42 which was issued in December 1936 (Reprint in: (Turing 1965);

151–154). Online version: http://www.abelard.org/turpap2/tp2-
ie.asp.

Turing, A. M. (1950), ‘Computing machinery and intelligence’, Mind

49, 433–460. Available online: http://cogprints.org/499/00/tur
ing.html. Reprinted in (Turing 1992).

Turing, A. M. (1965), On computable numbers, with an application to the
Entscheidungsproblem, in M. Davis, ed., ‘The Undecidable’, Raven

Press, Hewlett, NY, pp. 116–151.

Turing, A. M. (1992), Collected Works of A.M. Turing: Mechanical Intelli-
gence, North Holland, Amsterdam.

Vaandrager F. W.and De Nicola, R. (1990), Actions versus state based logics

for transition systems, in ‘Proc. Ecole de Printemps on Semantics of
Concurrency’, Vol. 469 of Lecture Notes in Computer Science, Sprin-

ger, pp. 407–419.

Valmari, A. (1992), ‘A stubborn attack on state explosion’, Formal Methods
Syst. Des. 1, 297–322.

Vardi, M. & Wolper, P. (1986a), An automata-theoretic approach to auto-
matic program verification (preliminary report), in ‘Proceedings of the

1st Annual IEEE Symposium on Logic in Computer Science’, IEEE
Computer Society Press, Cambridge, MA, pp. 332–344.

Vardi, M. & Wolper, P. (1994), ‘Reasoning about infinite computations’,

Inf. Comput. 115, 1–37.

Vardi, M. Y. (1985), Automatic verification of probabilistic concurrent
finite-state programs, in ‘Proc. 26th IEEE Symp. on Foundations of

Computer Science’, Portland, pp. 327–338.

122

Temporal Logic Model Checkers as Applied in Computer Science

Vardi, M. Y. (1989), Unified verification theory, in ‘Temporal Logic in Spe-

cification’, Vol. 398 of Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, pp. 202–212.

Vardi, M. Y. (1995), An automata-theoretic approach to linear temporal

logic, in ‘Banff Higher Order Workshop’, pp. 238–266.

Vardi, M. Y. (2001), Branching vs. linear time: Final showdown, in ‘Pro-

ceedings of the 7th International Conference on Tools and Algorithm
for the Construction and Analysis of Systems TACAS’01’, pp. 1–22.

Vardi, M. Y. & Stockmeyer, L. (1985), Improved upper and lower bounds for
modal logics of programs, in ‘Proceedings of the 17th Annual ACM

Symposium on the Theory of Computing’, ACM, pp. 240–251.

Vardi, M. Y. & Wolper, P. (1986b), ‘Automata-theoretic techniques for mo-

dal logics of programms’, Journal of Computer and System Science
32(2), 183–221.

Varpaaniemi, K., Halme, J., Hiekkanen, K. & Pyssysalo, T. (1995), Prod

reference manual, Tech. Rep. B13, Helsinki University of Technology,

Digital Systems Laboratory, Espoo, Finland.

Vergauwen, B. & Lewi, J. (1993), A linear local model checking algorithm for

ctl, in E. Best, ed., ‘Proceedings of the 4th International Conference
on Concurrency Theory (CONCUR’93)’, Vol. 715 of Lecture Notes in

Computer Science, Hildesheim, Germany, pp. 447–461.

Visser, W. & Barringer, H. (1996), Memory efficient state storage in Spin, in

J.-C. G. et al., ed., ‘Proceedings of the 2nd Workshop on the Spin Ve-
rification System, Rutgers University, NJ’, Vol. 32 of DIMACS Series

in Discrete Mathematics and Theoretical Computer Science, Ameri-
can Mathematical Society, Boston, MA, pp. 185–203.

Visser, W., Havelund, K., Brat, G. & Park, S. (2000), Model checking pro-
grams, in P. Alexander & P. Flener, eds, ‘Proceedings of the 15th

IEEE Conference on Automated Software Engineering (ASE-2000)’,
IEEE Computer Society Press, Grenoble, France, pp. 3–12.

Walukiewicz, I. (1995), Completeness of kozen’s axiomatisation of the pro-
positional µ-calculus, in ‘Proceedings, Tenth Annual IEEE Sympo-

sium on Logic in Computer Science’, IEEE Computer Society, San
Diego, California, pp. 14–24.

Walukiewicz, I. (1996), ‘A note on the completeness of kozen’s axiomatisa-
tion of the propositional µ-calculus’, The Bulletin of Symbolic Logic

2(3), 349–366.

123

Kazimierz Trzęsicki

Wang, W., Hidvegi, Z., Bailey, A. & Whinston, A. (2000), ‘E-process design

and assurance using model checking’, IEEE Computer 33(10), 48–53.

Willems, B. & Wolper, P. (1996), Partial-order methods for model checking:

From linear time to branching time, in ‘Logic in Computer Science’,
pp. 294–303.

Williams, G. (1992), ‘A shy blend of logic, maths and languages (Obituary

of Charles Hamblin)’, Sydney Morning Herald .

Wolper, P. (1983), ‘Temporal logic can be more expressive’, Information

and Control 56(1–2), 72–93.

Wolper, P. (1995), On the relation of program and computation to models
of temporal logic, in L. Bolc & A. Szałas, eds, ‘Time and Logic. A

Computational Approach’, UCL Press Limited, pp. 131–178.

Wolper, P. & Leroy, D. (1993), Reliable hashing without collision detec-

tion, in C. Courcoubetis, ed., ‘Proceedings of the 5th International
Conference on Computer Aided Verification (CAV ’93)’, Vol. 697 of

Lecture Notes in Computer Science, Springer-Verlag, Elounda, Gre-
ece, pp. 59–70.

Wolper, P., Vardi, M. Y. & Sistla, A. P. (1983), Reasoning about infinite

computation paths, in ‘Proc. 24th IEEE Symposium on Foundations
of Computer Science’, IEEE Press, Tucson, AZ, pp. 185–194.

Yi, W., Pettersson, P. & Daniels, M. (1994), Automatic verification of
real-time communicating systems by constraint-solving, in D. Hogrefe

& S. Leue, eds, ‘Proceedings of the 7th WG6.1 International Confe-
rence on Formal Description Techniques (FORTE ’94)’, Vol. 6, Inter-
national Federation for Information Processing, Berne, Switzerland,

Chapman and Hall, London, UK, pp. 243–258.

Yovine, S. (1997), ‘Kronos: A verification tool for real-time systems’, Int. J.

Softw. Tools Technol. Transfer 1(1/2), 123–133.

Yuen, C. & Tloe (2001), Modeling and verifying a price model for congestion
control in computer networks using promela/Spin, in M. Dwyer, ed.,

‘Proceedings of the 8th International SPIN Workshop (SPIN 2001)’,
Vol. 2057 of Lecture Notes in Computer Science, Springer-Verlag, To-

ronto, Canada, pp. 272–287.

Zanardo, A. & Carmo, J. (1993), ‘Ockhamist computational logic: Past-sen-

sitive necessitation in CTL’, J. Logic Computat. 3(3), 249–268.

124

Temporal Logic Model Checkers as Applied in Computer Science

Zhang, L. & Malik, S. (2002), The quest for efficient boolean satisfiabi-

lity solvers, in E. Brinksma & K. G. Larsen, eds, ‘Proceedings of
the 14th International Conference on Computer Aided Verification

(CAV)’, Vol. 2404 of Lecture Notes in Computer Science, Springer,
pp. 17–36.

Zuck, L. (1986), Past Temporal Logic, PhD thesis, Weizmann Institute.

Kazimierz Trzęsicki
Chair of Logic, Informatics and Philisophy of Science

University of Białystok
ul. Sosnowa 64,

15–887 Białystok, Poland
kasimir@ii.uwb.edu.pl

125

