
CS 267: Automated Verification 
 
 
Lecture 2: Linear vs. Branching time. Temporal 
Logics: CTL, CTL*. CTL model checking 
algorithm. Counter-example generation. 
  
Instructor: Tevfik Bultan 
 



Linear Time vs. Branching Time 

•  In linear time logics we look at the execution paths 
individually 

•  In branching time logics we view the computation as a tree 
–  computation tree: unroll the transition relation 
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Computation Tree Logic (CTL) 

•  In CTL we quantify over the paths in the computation tree 

•  We use the same four temporal operators: X, G, F, U 

•  However we attach path quantifiers to these temporal 
operators: 
–  A : for all paths 
–  E : there exists a path 

•  We end up with eight temporal operators: 
–  AX, EX, AG, EG, AF, EF, AU, EU 



CTL Semantics 

Given a state s and CTL properties p and q 
 
s |= p   iff  L(s, p) = True, where p ∈ AP 
s |= ¬p  iff  not s |= p 
s |= p ∧ q  iff  s |= p and s |= q 
s |= p ∨ q  iff  s |= p or s |= q 
 
s0 |= EX p  iff  there exists a path s0, s1, s2, ... such that 

   s1
 |= p 

s0 |= AX p  iff  for all paths s0, s1, s2, ..., s1
 |= p 

 



CTL Semantics 

s0 |= EG p  iff  there exists a path s0, s1, s2, ... such that 
    for all i ≥ 0,  si |= p 

s0 |= AG p  iff  for all paths s0, s1, s2, ..., for all i ≥ 0,   
    si |= p 

s0 |= EF p  iff  there exists a path s0, s1, s2, … such 
    that there exists an i ≥ 0 such that si |= p 

s0 |= AF p  iff  for all paths s0, s1, s2, ..., there exists  
    an i ≥ 0, such that, si |= p 

s0 |= p EU q  iff  there exists a path s0, s1, s2, ..., such  
    that, there exists an i ≥ 0 such that si |= q 

   and for all 0 ≤ j < i, sj
 |= p 

s0 |= p AU q  iff  for all paths s0, s1, s2, ..., there exists an 
    i≥0 such that si|=q and for all 0≤ j< i, sj|=p 



CTL Properties 
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CTL Equivalences 

•  CTL basis: EX, EU, EG 
 
AX p = ¬ EX ¬p 
AG p = ¬ EF ¬p 
AF p = ¬ EG ¬p 
p AU q = ¬( (¬q EU (¬p ∧¬q)) ∨ EG ¬ q) 
EF p = True EU p 
 
•  Another CTL basis: EX, EU, AU 



CTL Model Checking 

•  Given a transition system T= (S, I, R) and a CTL property p  
T |= p  iff  for all initial state s ∈ I, s |= p 
 

Model checking problem: Given a transition system T and a 
CTL property p, determine if T is a model for p (i.e., if T |=p) 
 

For example: 
T  |=?  AG ( ¬ (pc1=c ∧ pc2=c)) 
T  |=?  AG(pc1=w ⇒ AF(pc1=c)) ∧ AG(pc2=w ⇒ AF(pc2=c)) 

•  Question: Are CTL and LTL equivalent? 
 



CTL vs. LTL 

•  CTL and LTL are not equivalent 

–  There are properties that can be expressed in LTL but 
cannot be expressed in CTL  

•  For example: FG p 

–  There are properties that can be expressed in CTL but 
cannot be expressed in LTL 

•  For example: AG(EF p) 

•  Hence, expressive power of CTL and LTL are not 
comparable 



CTL* 

•  CTL* is a temporal logic which is strictly more powerful than 
CTL and LTL 

•  CTL* also uses the temporal operators X, F, G, U and the 
path quantifiers A and E, but temporal operators can also 
be used without path quantifiers 



CTL* 

•  CTL and CTL* correspondence  
–  Since and CTL property is also a CTL* property, CTL* is 

clearly as expressive as CTL 
•  Any LTL f property corresponds to the CTL* property A f 

–  i.e., LTL properties have an implicit “for all paths” 
quantifier in front of them  

–  Note that, according to our definition, an LTL property f 
holds for a transition system T, if and only if, for all 
execution paths of T, f holds 

–  So, LTL property f holds for the transition system T if and 
only if the CTL* property A f holds for all initial states of T 



CTL* 

•  CTL* is more expressive than CTL and LTL 

•  Following CTL* property cannot be expressed in CTL or 
LTL 
–  A(FG p) ∨ AG(EF p) 



Model Checking Algorithm for Finite State Systems  
[Clarke and Emerson 81], [Queille and Sifakis 82] 

CTL Model checking problem: Given a transition system T = 
(S, I, R), and a CTL formula f, does the transition system 
satisfy the property? 

 
CTL model checking problem can be solved in  

 O(|f| × (|S|+|R|)) 
 

Note that the complexity is linear in the size of the formula and 
the transition system 
–  Recall that the size of the transition system is 

exponential in the number of variables and concurrent 
components (this is called the state space explosion 
problem) 



CTL Model Checking Algorithm 

•  Translate the formula to a formula which uses the basis  
–  EX p, EG p, p EU q  

•  Start from the innermost subformulas  
–  Label the states in the transition system with the 

subformulas that hold in that state  
•  Initially states are labeled with atomic properties 

•  Each (temporal or boolean) operator has to be processed 
once 

•  Processing of each operator takes O(|S|+|R|)  



CTL Model Checking Algorithm 

•  Boolean operators are easy 

–  ¬p : Each state which is not labeled with p should be 
labeled with ¬p  

–  p ∧ q : Each state which is labeled with both p and q 
should be labeled with p ∧ q   

–  p ∨ q : Each state which is labeled with p or q should be 
labeled with p ∨ q  



CTL Model Checking Algorithm: EX p 

•  EX p is easy to do in O(|S|+|R|) 
–  All the nodes which have a next state labeled with p 

should be labeled with EX p 
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CTL Model Checking Algorithm: p EU q 

•  p EU q: Find the states which are the source of a path 
where p U q holds 
–  Find the nodes that reach a node that is labeled with q 

by a path where each node is labeled with p 
•  Label such nodes with p EU q 

–  It is a reachability problem which can be solved in O(|S|
+|R|) 

•  First label the nodes which satisfy q with p EU q 
•  For each node labeled with p EU q, label all its 

previous states that are labeled with p with p EU q  



CTL Model Checking Algorithm: p EU q 
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CTL Model Checking Algorithm: EG p 

•  EG p: Find infinite paths where each node on the path is 
labeled with p, and label nodes in such paths with EG p 
–  First remove all the states which do not satisfy p from 

the transition graph 
–  Compute the strongly connected components of the 

remaining graph, and then find the nodes which can 
reach the strongly connected components (both of which 
can be done in O(|S|+|R|) 

–  Label the nodes in the strongly connected components 
and the nodes that can reach the strongly connected 
components with EG p 



CTL Model Checking Algorithm: EG p 
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Verification vs. Falsification 

•  Verification:  
–  Show: initial states ⊆ truth set of p 

•  Falsification: 
–  Find: a state ∈ initial states ∩ truth set of ¬p 
–  Generate a counter-example starting from that state 

•  Model checking algorithms can be modified to generate a 
counter-example paths if the property is not satisfied 
–  without increasing the complexity 

•  The ability to find counter-examples is one of the biggest 
strengths of the model checkers 



Counter-Example Generation 

•  Remember: Given a transition system T= (S, I, R) and a 
CTL property p T |= p iff for all initial state s ∈ I, s |= p 

•  Verification vs. Falsification 
–  Verification:  

•  Show: initial states ⊆ truth set of p 
–  Falsification: 

•  Find: a state ∈ initial states ∩ truth set of ¬p 
•  Generate a counter-example starting from that state 

•  The ability to find counter-examples is one of the biggest 
strengths of the model checkers 



General Idea 

•  We can define two temporal logics using subsets of CTL 
operators 
–  ACTL: CTL formulas which only use the temporal 

operators AX, AG, AF and AU and all the negations 
appear only in atomic properties (there are no negations 
outside of temporal operators) 

–  ECTL: CTL formulas which only use the temporal 
operators EX, EG, EF and EU and all the negations 
appear only in atomic properties  

•  Given an ACTL property its negation is an ECTL property 
 

 



An Example 

•  If we wish to check the property AG(p) 

•  We can use the equivalence: 
  AG(p) ≡ ¬ EF(¬p) 
 
If we can find an initial state which satisfies EF(¬p), then we 

know that the transition system T, does not satisfy the 
property AG(p) 



Another Example 

•  If we wish to check the property AF(p) 

•  We can use the equivalence: 
  AF(p) ≡ ¬ EG(¬p) 
 
If we can find an initial state which satisfies EG(¬p), then we 

know that the transition system T, does not satisfy the 
property AF(p) 



Counter-Example Generation for ACTL 

•  Given an ACTL property p, we negate it and compute the 
set of states which satisfy it is negation ¬ p  
–  ¬p is an ECTL property 

•  If we can find an initial state which satisfies ¬ p then we 
generate a counter-example path for p starting from that 
initial state by following the states that are marked with ¬ p 
–  Such a path is called a witness for the ECTL property    
¬ p  



Counter-example generation for ACTL 

•  In general the counter-example for an ACTL property 
(equivalently a witness to an ECTL property) is not a single 
path 

•  For example, the counter example for the property AF(AGp) 
would be a witness for the property EG(EF¬p) 
–  It is not possible to characterize the witness for  

 EG(EF¬p) as a single path 
•  However it is possible to generate tree-like transition graphs 

containing counter-example behaviors as a counter-
example: 
–  Edmund M. Clarke, Somesh Jha, Yuan Lu, Helmut 

Veith: “Tree-Like Counterexamples in Model Checking”. 
LICS 2002: 19-29 



Counter-example generation for LTL 

–  Recall that, an LTL property f holds for a transition system 
T, if and only if, for all execution paths of T, f holds 

•  Then, to generate a counter-example for an LTL property f, 
we need to show that there exists an execution path for 
which ¬f holds.  
–  Given an LTL property f, a counter-example is an 

execution path for which ¬f holds 



What About LTL and CTL* Model Checking? 

•  The complexity of the model checking problem for LTL and 
CTL*  are:  
–  (|S|+|R|) × 2O(|f|)  

•  Typically the size of the formula is much smaller than the 
size of the transition system  
–  So the exponential complexity in the size of the formula 

is not very significant in practice 


