
CS 267: Automated Verification

Lecture 2: Linear vs. Branching time. Temporal
Logics: CTL, CTL*. CTL model checking
algorithm. Counter-example generation.

Instructor: Tevfik Bultan

Linear Time vs. Branching Time

•  In linear time logics we look at the execution paths
individually

•  In branching time logics we view the computation as a tree
–  computation tree: unroll the transition relation

s2 s1 s4 s3

Transition System Execution Paths Computation Tree

s3

s4

s3

s3

s1

s2
. . .

.

.

.

s3

s4

s3

s3

s1

s2

. . .
.
.
.

s3 s4 s1
.
.
.

. . .
.
.
.

s4 s1
.
.
.

Computation Tree Logic (CTL)

•  In CTL we quantify over the paths in the computation tree

•  We use the same four temporal operators: X, G, F, U

•  However we attach path quantifiers to these temporal
operators:
–  A : for all paths
–  E : there exists a path

•  We end up with eight temporal operators:
–  AX, EX, AG, EG, AF, EF, AU, EU

CTL Semantics

Given a state s and CTL properties p and q

s |= p iff L(s, p) = True, where p ∈ AP
s |= ¬p iff not s |= p
s |= p ∧ q iff s |= p and s |= q
s |= p ∨ q iff s |= p or s |= q

s0 |= EX p iff there exists a path s0, s1, s2, ... such that

 s1
 |= p

s0 |= AX p iff for all paths s0, s1, s2, ..., s1
 |= p

CTL Semantics

s0 |= EG p iff there exists a path s0, s1, s2, ... such that
 for all i ≥ 0, si |= p

s0 |= AG p iff for all paths s0, s1, s2, ..., for all i ≥ 0,
 si |= p

s0 |= EF p iff there exists a path s0, s1, s2, … such
 that there exists an i ≥ 0 such that si |= p

s0 |= AF p iff for all paths s0, s1, s2, ..., there exists
 an i ≥ 0, such that, si |= p

s0 |= p EU q iff there exists a path s0, s1, s2, ..., such
 that, there exists an i ≥ 0 such that si |= q

 and for all 0 ≤ j < i, sj
 |= p

s0 |= p AU q iff for all paths s0, s1, s2, ..., there exists an
 i≥0 such that si|=q and for all 0≤ j< i, sj|=p

CTL Properties

s2 s1 s4 s3

Transition System Computation Tree

s4

s3

s3

s1

s2

. . .
.
.
.

s3 s4 s1
.
.
.

. . .
.
.
.

s4 s1
.
.
.

p p p

p

p

p

s3 |= p
s4 |= p
s1 |= ¬ p
s2 |= ¬ p

s3 |= EX p
s3 |= EX ¬ p
s3 |= ¬ AX p
s3 |= ¬ AX ¬ p
s3 |= EG p
s3 |= ¬ EG ¬ p
s3 |= AF p
s3 |= EF ¬ p
s3 |= ¬ AF ¬ p

p

p

CTL Equivalences

•  CTL basis: EX, EU, EG

AX p = ¬ EX ¬p
AG p = ¬ EF ¬p
AF p = ¬ EG ¬p
p AU q = ¬((¬q EU (¬p ∧¬q)) ∨ EG ¬ q)
EF p = True EU p

•  Another CTL basis: EX, EU, AU

CTL Model Checking

•  Given a transition system T= (S, I, R) and a CTL property p
T |= p iff for all initial state s ∈ I, s |= p

Model checking problem: Given a transition system T and a
CTL property p, determine if T is a model for p (i.e., if T |=p)

For example:
T |=? AG (¬ (pc1=c ∧ pc2=c))
T |=? AG(pc1=w ⇒ AF(pc1=c)) ∧ AG(pc2=w ⇒ AF(pc2=c))

•  Question: Are CTL and LTL equivalent?

CTL vs. LTL

•  CTL and LTL are not equivalent

–  There are properties that can be expressed in LTL but
cannot be expressed in CTL

•  For example: FG p

–  There are properties that can be expressed in CTL but
cannot be expressed in LTL

•  For example: AG(EF p)

•  Hence, expressive power of CTL and LTL are not
comparable

CTL*

•  CTL* is a temporal logic which is strictly more powerful than
CTL and LTL

•  CTL* also uses the temporal operators X, F, G, U and the
path quantifiers A and E, but temporal operators can also
be used without path quantifiers

CTL*

•  CTL and CTL* correspondence
–  Since and CTL property is also a CTL* property, CTL* is

clearly as expressive as CTL
•  Any LTL f property corresponds to the CTL* property A f

–  i.e., LTL properties have an implicit “for all paths”
quantifier in front of them

–  Note that, according to our definition, an LTL property f
holds for a transition system T, if and only if, for all
execution paths of T, f holds

–  So, LTL property f holds for the transition system T if and
only if the CTL* property A f holds for all initial states of T

CTL*

•  CTL* is more expressive than CTL and LTL

•  Following CTL* property cannot be expressed in CTL or
LTL
–  A(FG p) ∨ AG(EF p)

Model Checking Algorithm for Finite State Systems
[Clarke and Emerson 81], [Queille and Sifakis 82]

CTL Model checking problem: Given a transition system T =
(S, I, R), and a CTL formula f, does the transition system
satisfy the property?

CTL model checking problem can be solved in

 O(|f| × (|S|+|R|))

Note that the complexity is linear in the size of the formula and
the transition system
–  Recall that the size of the transition system is

exponential in the number of variables and concurrent
components (this is called the state space explosion
problem)

CTL Model Checking Algorithm

•  Translate the formula to a formula which uses the basis
–  EX p, EG p, p EU q

•  Start from the innermost subformulas
–  Label the states in the transition system with the

subformulas that hold in that state
•  Initially states are labeled with atomic properties

•  Each (temporal or boolean) operator has to be processed
once

•  Processing of each operator takes O(|S|+|R|)

CTL Model Checking Algorithm

•  Boolean operators are easy

–  ¬p : Each state which is not labeled with p should be
labeled with ¬p

–  p ∧ q : Each state which is labeled with both p and q
should be labeled with p ∧ q

–  p ∨ q : Each state which is labeled with p or q should be
labeled with p ∨ q

CTL Model Checking Algorithm: EX p

•  EX p is easy to do in O(|S|+|R|)
–  All the nodes which have a next state labeled with p

should be labeled with EX p

s2 s1 s4 s3

p p

p, EX p p, EX p

EX p

s2 s1 s4 s3

CTL Model Checking Algorithm: p EU q

•  p EU q: Find the states which are the source of a path
where p U q holds
–  Find the nodes that reach a node that is labeled with q

by a path where each node is labeled with p
•  Label such nodes with p EU q

–  It is a reachability problem which can be solved in O(|S|
+|R|)

•  First label the nodes which satisfy q with p EU q
•  For each node labeled with p EU q, label all its

previous states that are labeled with p with p EU q

CTL Model Checking Algorithm: p EU q

s2 s1 s4 s3

p p

p, p EU q
p, p EU q

s2 s1 s4 s3

q

q, p EU q

CTL Model Checking Algorithm: EG p

•  EG p: Find infinite paths where each node on the path is
labeled with p, and label nodes in such paths with EG p
–  First remove all the states which do not satisfy p from

the transition graph
–  Compute the strongly connected components of the

remaining graph, and then find the nodes which can
reach the strongly connected components (both of which
can be done in O(|S|+|R|)

–  Label the nodes in the strongly connected components
and the nodes that can reach the strongly connected
components with EG p

CTL Model Checking Algorithm: EG p

s2 s1 s4 s3

p p

p, EG p
p, EG p

s2 s1 s4 s3

p

p, EG p

s2 s4 s3

p p

p

A strongly connected
component

Verification vs. Falsification

•  Verification:
–  Show: initial states ⊆ truth set of p

•  Falsification:
–  Find: a state ∈ initial states ∩ truth set of ¬p
–  Generate a counter-example starting from that state

•  Model checking algorithms can be modified to generate a
counter-example paths if the property is not satisfied
–  without increasing the complexity

•  The ability to find counter-examples is one of the biggest
strengths of the model checkers

Counter-Example Generation

•  Remember: Given a transition system T= (S, I, R) and a
CTL property p T |= p iff for all initial state s ∈ I, s |= p

•  Verification vs. Falsification
–  Verification:

•  Show: initial states ⊆ truth set of p
–  Falsification:

•  Find: a state ∈ initial states ∩ truth set of ¬p
•  Generate a counter-example starting from that state

•  The ability to find counter-examples is one of the biggest
strengths of the model checkers

General Idea

•  We can define two temporal logics using subsets of CTL
operators
–  ACTL: CTL formulas which only use the temporal

operators AX, AG, AF and AU and all the negations
appear only in atomic properties (there are no negations
outside of temporal operators)

–  ECTL: CTL formulas which only use the temporal
operators EX, EG, EF and EU and all the negations
appear only in atomic properties

•  Given an ACTL property its negation is an ECTL property

An Example

•  If we wish to check the property AG(p)

•  We can use the equivalence:
 AG(p) ≡ ¬ EF(¬p)

If we can find an initial state which satisfies EF(¬p), then we

know that the transition system T, does not satisfy the
property AG(p)

Another Example

•  If we wish to check the property AF(p)

•  We can use the equivalence:
 AF(p) ≡ ¬ EG(¬p)

If we can find an initial state which satisfies EG(¬p), then we

know that the transition system T, does not satisfy the
property AF(p)

Counter-Example Generation for ACTL

•  Given an ACTL property p, we negate it and compute the
set of states which satisfy it is negation ¬ p
–  ¬p is an ECTL property

•  If we can find an initial state which satisfies ¬ p then we
generate a counter-example path for p starting from that
initial state by following the states that are marked with ¬ p
–  Such a path is called a witness for the ECTL property
¬ p

Counter-example generation for ACTL

•  In general the counter-example for an ACTL property
(equivalently a witness to an ECTL property) is not a single
path

•  For example, the counter example for the property AF(AGp)
would be a witness for the property EG(EF¬p)
–  It is not possible to characterize the witness for

 EG(EF¬p) as a single path
•  However it is possible to generate tree-like transition graphs

containing counter-example behaviors as a counter-
example:
–  Edmund M. Clarke, Somesh Jha, Yuan Lu, Helmut

Veith: “Tree-Like Counterexamples in Model Checking”.
LICS 2002: 19-29

Counter-example generation for LTL

–  Recall that, an LTL property f holds for a transition system
T, if and only if, for all execution paths of T, f holds

•  Then, to generate a counter-example for an LTL property f,
we need to show that there exists an execution path for
which ¬f holds.
–  Given an LTL property f, a counter-example is an

execution path for which ¬f holds

What About LTL and CTL* Model Checking?

•  The complexity of the model checking problem for LTL and
CTL* are:
–  (|S|+|R|) × 2O(|f|)

•  Typically the size of the formula is much smaller than the
size of the transition system
–  So the exponential complexity in the size of the formula

is not very significant in practice

