

Defining
Liveness

by Bowen Alpern and Fred B.
Schneider

Presented by Joe Melnyk

Introduction
 view of concurrent program execution

 a sequence = s0s1s2... of states

 each state si (for i > 0) is the result of a single atomic
action from si -1

 property = set of such sequences
 a property P holds for a program if the set of all sequences

defined by the program is contained within the property

 arguments to prove a program satisfies a given
property:
 safety property – invariance
 liveness property – well-foundedness

Safety Properties
 informal definition: no “bad things” happen during

program execution
 examples and their respective “bad things”

 mutual exclusion; two processes executing in the critical section
at the same time

 deadlock freedom; deadlock
 partial correctness; starting state satisfied the precondition, but

the termination state does not satisfy the postcondition
 first-come-first-serve; servicing a request made after one that has

not yet been serviced

 formal definition:
 assumptions

 let
 S = set of program states
 S = set of infinite sequences of program states
 S* = set of finite sequences of program states

 execution of a program can be modeled as a member of S

 elements of S = executions
 elements of S* = partial executions
 |= P if is in property P
 let i = partial execution consisting of the first i states in

 in order for P to be a safety property, if P doesn’t hold
for an execution then a “bad thing” must happen at
some point

 the “bad thing” is irremediable since a safety property
states that “bad things” never happen during
execution

 therefore, P is a safety property if and only if
 (: S: | P (i : 0i: (: S: i | P)))

 by the definition, a safety property unconditionally
prohibits a “bad thing” from occurring; if it does occur,
there is an identifiable point at which this can be
recognized

Liveness Properties
 informal definition: a “good thing” happens

during program execution
 examples and their respective “good things”

 starvation freedom; making progress
 termination; completion of the final instruction
 guaranteed service; receiving service

 defining characteristic of liveness
 no partial execution is irremediable; a “good thing”

can always occur in the future
 note: if a partial execution were irremediable, it would

be a “bad thing” and liveness properties cannot reject
“bad things”, only ensure “good things”

 formal definition:
 a partial execution is live for a property P if and only

if there is a sequence of states such that |=P
 in a liveness property, every partial execution is live
 therefore, P is a liveness property if and only if

(: S*: (: S: |=P)

 notice:
 no restriction on what the “good thing” is nor requirement that

it be discrete
 for example, the “good thing” in starvation freedom

(progress) is an infinite collection of discrete events
 hence, “good things” are fundamentally different from

“bad things”
 a liveness property cannot stipulate that a “good thing”

always happens, only that it eventually happens

 the authors believe no liveness definition is more
permissive
 proof (by contradiction):

 suppose that P is a liveness property that doesn’t satisfy the
definition; then there must be a partial execution such that
(: S: |P)

 since is a “bad thing” rejected by P, P is in part a safety
property and not a liveness property

 this contradicts the assumption of P being a liveness
property

 more restrictive liveness definitions
 uniform liveness:

(: S: (: S*: |=P)
 P is a liveness property if and only if there is a single

execution () that can be appended to every partial
execution () so that the resulting sequence is in P

 absolute liveness
(: S: |=P)(: S: |=P (: S*: |=P))
 P is an absolute-liveness property if and only if it is non-

empty and any execution () in P can be appended to any
partial execution () to obtain a sequence in P

 contrast of definitions
 liveness: if any partial execution can be extended by

some execution so that is in L (choice of may
depend on), then L is a liveness property

 uniform-liveness: if there is a single execution that
extends all partial execution such that is in U,
then U is a uniform-livness property

 absolute liveness: if A is non-empty and any execution
 in A can be used to extend all partial executions ,
then A is an absolute-liveness property

 any absolute-liveness property is also a uniform-
liveness property and any uniform-liveness property is
also a liveness property

 absolute-liveness does not include properties
that should be considered liveness
 leads-to - any occurrence of an event of type E1 is

eventually followed by an occurrence of an event of
type E2

 example: guaranteed service
 such properties are liveness properties when E2 is satisfiable

(E2 is the “good thing”)

 leads-to properties are not absolute-liveness properties
 consider execution where no event of type E1 or E2

occurs
 leads-to holds on , but appending to a partial

execution consisting of a single event of type E1 yields
and execution that does not satisfy the property

 uniform-liveness does not capture the intuition of
liveness either
 examples

 predictive – if A initially holds then after some partial
execution B always holds; otherwise after some partial
execution, B never holds

 predictive is a liveness property since it requires a “good
thing” to happen: either “always B” or “always B”

 predictive is not a uniform-liveness property since there is
no single sequence that can extend all partial executions

Other Properties (neither safety nor liveness)
 until – eventually an event of type E2 will happen; all

preceding events are of type E1

 this is the intersection of a safety and liveness property
 safety: “` E1 before E2’ doesn’t happen”

 liveness: “E2 eventually happens”

 total correctness is also the intersection of a safety property and
a liveness property: partial correctness and termination,
respectively

 topological overview of S:
 safety properties are the closed sets and liveness properties are

the dense sets
 basic open sets: sets of all executions that share a common prefix
 open set: union of all basic open sets
 closed set: complement of an open set
 dense set: intersects every non-empty open set

 Theorem: every property P is the intersection of
a safety and a liveness property
 proof:

 letP be the smallest safety property containing P and let L
be (P - P)

 then:
 L P = (P – P) P = (P P) P

 = (P P) (P P) = P P
 = P

 need to show that L is dense and hence a liveness property
(using proof by contradiction):

 assume there is a non-empty open set O contained in L
 and thus L is not dense

 then O (P - P) and hence P (P - O)
 P - O is closed (and is therefore a safety property)

since the intersection of two closed sets is closed
 this contradictsP being the smallest safety property

containing P

 corollary:
if a notation for expressing properties is closed under

comlement, intersection and topological closure then
any -expressible property is the intersection of a -
expressible safety property and a -expressible
liveness property

 therefore, to show that
 every property P expressible in a temporal logic is equivalent

to the conjunction of a safety and a liveness property
expressed in the logic

 due to the corollary, we just need to show that the smallest
safety property containing P is also expressible in the logic

 Theorem: If |S| > 1 then any property P is the
intersection of two liveness properties
 proof:

 states a, b S by the hypothesis; let La (and Lb) be the set
of executions with tails that are an infinite sequence of a’s
(and b’s); both La and Lb are liveness properties and La
 Lb =

 (P La) (P Lb) = (P P) (P La) (P Lb) (La Lb) =
P

 since the union of any set and a dense set is dense, P La
and P Lb are liveness properties

 corollary:
if a notation for expressing properties is closed under

intersection and there exists -expressible liveness
properties with empty intersection than any -
expressible property is the intersection of two -
expressible liveness properties

 further notes - using the topological definitions
given, it can also be shown that:
 safety and liveness are closed under Boolean

operations
 safety properties are closed under union and

intersection
 liveness properties are closed only under union
 neither safety nor liveness is closed under

complement
 S is the only property which is closed under safety

and liveness

	Defining Liveness by Bowen Alpern and Fred B. Schneider Presented by Joe Melnyk
	PowerPoint Presentation
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15

