Defining Liveness by Bowen Alpern and Fred B. Schneider Presented by Joe Melnyk

Introduction

view of concurrent program execution

• a sequence $\sigma = s_0 s_1 s_2 \dots$ of states

each state s_i (for i > 0) is the result of a single atomic action from s_{i-1}

- property = set of such sequences
 - a property *P* holds for a program if the set of all sequences defined by the program is contained within the property
- arguments to prove a program satisfies a given property:
 - safety property invariance
 - Iiveness property well-foundedness

Safety Properties

- informal definition: no "bad things" happen during program execution
- examples and their respective "bad things"
 - mutual exclusion; two processes executing in the critical section at the same time
 - deadlock freedom; deadlock
 - partial correctness; starting state satisfied the precondition, but the termination state does not satisfy the postcondition
 - first-come-first-serve; servicing a request made after one that has not yet been serviced
- formal definition:
 - assumptions
 - let
 - S = set of program states
 - S^o = set of infinite sequences of program states
 - S* = set of finite sequences of program states

- execution of a program can be modeled as a member of S^o
- elements of S^o = executions
- elements of S^{*} = partial executions
- $\sigma = P$ if σ is in property P
- let σ_i = partial execution consisting of the first *i* states in σ

in order for *P* to be a safety property, if *P* doesn't hold for an execution then a "bad thing" must happen at some point

- the "bad thing" is irremediable since a safety property states that "bad things" never happen during execution
- therefore, *P* is a *safety property* if and only if

• $(\forall \sigma: \sigma \in S^{\omega}: \sigma \neq P \Longrightarrow (\exists i : 0 \le i: (\forall \beta: \beta \in S^{\omega}: \sigma_i \beta \neq P)))$

 by the definition, a safety property unconditionally prohibits a "bad thing" from occurring; if it does occur, there is an identifiable point at which this can be recognized

Liveness Properties

- informal definition: a "good thing" happens during program execution
- examples and their respective "good things"
 - starvation freedom; making progress
 - termination; completion of the final instruction
 - guaranteed service; receiving service
- defining characteristic of liveness
 - no partial execution is irremediable; a "good thing" can always occur in the future
 - note: if a partial execution were irremediable, it would be a "bad thing" and liveness properties cannot reject "bad things", only ensure "good things"

• formal definition:

- a partial execution α is *live* for a property *P* if and only if there is a sequence of states β such that αβ|=*P*
- in a *liveness property*, every partial execution is live
 therefore, *P* is a liveness property if and only if
 (∀α: α∈ S*: (∃β: β∈ S^ω: αβ]=*P*)

notice:

- no restriction on what the "good thing" is nor requirement that it be discrete
 - for example, the "good thing" in starvation freedom (progress) is an infinite collection of discrete events
 - hence, "good things" are fundamentally different from "bad things"
- a liveness property cannot stipulate that a "good thing" always happens, only that it eventually happens

the authors believe no liveness definition is more permissive

- proof (by contradiction):
 - suppose that *P* is a liveness property that doesn't satisfy the definition; then there must be a partial execution α such that (∀β: β∈S^ω: αβ|≠P)
 - since α is a "bad thing" rejected by P, P is in part a safety property and not a liveness property
 - this contradicts the assumption of P being a liveness property

more restrictive liveness definitions

- uniform liveness:
 - $(\exists \beta: \beta \in S^{\omega}: (\forall \alpha: \alpha \in S^*: \alpha\beta | = P)$
 - P is a liveness property if and only if there is a single execution (β) that can be appended to every partial execution (α) so that the resulting sequence is in P

absolute liveness

 $(\exists \gamma \colon \gamma \in S^{\omega} \colon \gamma | = P) \land (\forall \beta \colon \beta \in S^{\omega} \colon \beta | = P \Longrightarrow (\forall \alpha \colon \alpha \in S^* \colon \alpha \beta | = P))$

P is an absolute-liveness property if and only if it is nonempty and any execution (β) in *P* can be appended to any partial execution (α) to obtain a sequence in *P*

contrast of definitions

- liveness: if *any* partial execution α can be extended by *some* execution β so that $\alpha\beta$ is in *L* (choice of β may depend on α), then *L* is a liveness property
- uniform-liveness: if there is a single execution β that extends all partial execution α such that αβ is in U, then U is a uniform-livness property
- absolute liveness: if A is non-empty and any execution β in A can be used to extend all partial executions α, then A is an absolute-liveness property
- any absolute-liveness property is also a uniformliveness property and any uniform-liveness property is also a liveness property

- absolute-liveness does not include properties that should be considered liveness
 - *leads-to* any occurrence of an event of type *E*₁ is eventually followed by an occurrence of an event of type *E*₂
 - example: guaranteed service
 - such properties are liveness properties when E_2 is satisfiable $(E_2$ is the "good thing")
 - Ieads-to properties are not absolute-liveness properties
 - consider execution β where no event of type E₁ or E₂ occurs
 - *leads-to* holds on β, but appending β to a partial execution consisting of a single event of type E₁ yields and execution that does not satisfy the property

uniform-liveness does not capture the intuition of liveness either

- examples
 - predictive if A initially holds then after some partial execution B always holds; otherwise after some partial execution, B never holds
 - predictive is a liveness property since it requires a "good thing" to happen: either "always B" or "always ¬B"
 - predictive is not a uniform-liveness property since there is no single sequence that can extend all partial executions

Other Properties (neither safety nor liveness)

- until eventually an event of type E₂ will happen; all preceding events are of type E₁
 - this is the intersection of a safety and liveness property
 - safety: "` $\neg E_1$ before E_2 ' doesn't happen"
 - liveness: "E₂ eventually happens"
 - total correctness is also the intersection of a safety property and a liveness property: partial correctness and termination, respectively
- topological overview of S^o:
 - safety properties are the closed sets and liveness properties are the dense sets
 - basic open sets: sets of all executions that share a common prefix
 - open set: union of all basic open sets
 - closed set: complement of an open set
 - dense set: intersects every non-empty open set

Theorem: every property P is the intersection of a safety and a liveness property

- proof:
 - let \overline{P} be the smallest safety property containing \overline{P} and let L be \neg (\overline{P} P)

• then:

$$\cap \overline{P} = \neg (\overline{P} - P) \cap \overline{P} = (\neg \overline{P} \cup P) \cap \overline{P}$$
$$= (\neg \overline{P} \cap \overline{P}) \cup (P \cap \overline{P}) = P \cap \overline{P}$$
$$= P$$

- need to show that *L* is dense and hence a liveness property (using proof by contradiction):
 - assume there is a non-empty open set O contained in ¬L and thus L is not dense
 - then $O \subseteq (\overline{P} P)$ and hence $P \subseteq (\overline{P} O)$
 - \overline{P} O is closed (and is therefore a safety property) since the intersection of two closed sets is closed
 - this contradicts *P* being the smallest safety property containing *P*

• corollary:

if a notation Σ for expressing properties is closed under comlement, intersection and topological closure then any Σ -expressible property is the intersection of a Σ expressible safety property and a Σ -expressible liveness property

therefore, to show that

- every property P expressible in a temporal logic is equivalent to the conjunction of a safety and a liveness property expressed in the logic
- due to the corollary, we just need to show that the smallest safety property containing *P* is also expressible in the logic

- Theorem: If |S| > 1 then any property P is the intersection of two liveness properties
 - proof:
 - ∃ states a, b ∈ S by the hypothesis; let L_a (and L_b) be the set of executions with tails that are an infinite sequence of a's (and b's); both L_a and L_b are liveness properties and L
 ∩ L_b = φ
 - $(P \cup L_a) \cap (P \cup L_b) = (P \cap P) \cup (P \cap L_a) \cup (P \cap L_b) \cup (L_a \cap L_b) = P$
 - since the union of any set and a dense set is dense, P ∪L_a and P ∪L_b are liveness properties

• corollary:

if a notation Σ for expressing properties is closed under intersection and there exists Σ -expressible liveness properties with empty intersection than any Σ expressible property is the intersection of two Σ expressible liveness properties

- further notes using the topological definitions given, it can also be shown that:
 - safety and liveness are closed under Boolean operations
 - safety properties are closed under union and intersection
 - Iveness properties are closed only under union
 - neither safety nor liveness is closed under complement
 - S[®] is the only property which is closed under safety and liveness